Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như cách tui cũng gần giống bạn kia -.- thôi khỏi giải ... mệt
- Gọi nhiệt độ của dầu trong 3 bình lúc đầu là: t1
- Nhiệt dung riêng của dầu là: c1
- Khối lượng dầu là: m1
- Nhiệt dung riêng của khối kim loại hình trụ là: c2
- Khối lượng khối kim loại là: m2
- Độ tăng nhiệt độ của bình 3 là: t
Ta có:
Nhiệt độ của bình 1 sau khi cân bằng nhiệt là: t1 + 20
Nhiệt độ của bình 2 sau khi cân bằng nhiệt là: t1 + 5
Phương trình cân bằng nhiệt ở bình 2 là:
Qthu = Qtỏa
<=> m1.c1.5 = m2.c2 [(t1 + 20) - (t1 + 5)] = m2.c2.15 (1)
Phương trình cân bằng nhiệt ở bình 3 là:
Qthu = Qtỏa
<=> m1.c1.t = m2.c2 [(t1 + 5) - (t1 + t)] = m2.c2(5 - t) (2)
Chia 2 vế của (1) và (2):
\(\dfrac{m_1.c_1.5}{m_1.c_1.t}=\dfrac{m_2.c_2.15}{m_2.c_2\left(5-t\right)}\)
<=>\(\dfrac{5}{t}=\dfrac{15}{5-t}\) <=> 25 - 5t = 15t <=> t = 1,25
Vậy độ tăng nhiệt độ của bình 3 là: 1,25oC.
a/ Giả sử khi rót lượng nước m từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.(t - t1) = m2.(t2 - t) (1)
Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t' = 21,950C và lượng nước trong bình 1 lúc này chỉ còn (m1 - m) nên ta có phương trình cân bằng:
m.(t - t') = (m1 - m).(t' - t1) (2)
Từ (1) và (2) ta có pt sau:
m2.(t2 - t) = m1.(t' - t1)
\(t=\frac{m_2t_2\left(t'-t_1\right)}{m_2}\) (3)
Thay (3) vào (2) tính toán ta rút phương trình sau:
\(m=\frac{m_1m_2\left(t'-t_1\right)}{m_2\left(t_2-t_1\right)-m_1\left(t'-t_1\right)}\) (4)
Thay số vào (3) và (4) ta tìm được: t = 590C và m = 0,1 Kg.
b/ Lúc này nhiệt độ của bình 1 và bình 2 lần lượt là 21,950C và 590C bây giờ ta thực hiện rót 0,1Kg nước từ bình 1 sang bình 2 thì ta có thể viết được phương trình sau:
m.(T2 - t') = m2.(t - T2)
\(T_2=\frac{m_1t'+m_2t}{m+m_2}=58,12^0C\)
Bây giờ ta tiếp tục rót từ bình 2 sang bình 1 ta cũng dễ dàng viết được phương trình sau:
m.(T1 - T2) = (m1 - m).(t - T1)
\(T_1=\frac{mT_2+\left(m_1-m\right)t'}{m_1}=23,76^oC\)
Đáp án : B
- Giả sử khi rót lượng nước m (kg) từ bình 1 sang bình 2, nhiệt độ cân bằng của bình 2 là t nên ta có phương trình cân bằng:
m.c.(t - t 1 ) = m 2 .c.( t 2 - t)
⇒ m.(t - t 1 ) = m 2 .( t 2 - t) (1)
- Tương tự lần rót tiếp theo nhiệt độ cân bằng ở bình 1 là t ' = 21,95°C và lượng nước trong bình 1 lúc này chỉ còn ( m 1 - m) nên ta có phương trình cân bằng:
m.c(t - t ' ) = ( m 1 - m).c( t ' - t 1 )
⇒ m.(t - t ' ) = ( m 1 - m).( t ' - t 1 )
⇒ m.(t – t ' ) = m 1 .( t ' – t1) – m.( t ' – t 1 )
⇒ m.(t – t ' ) + m.( t ' – t1) = m 1 ( t ' – t 1 )
⇒ m.(t – t 1 ) = m 1 .( t ' – t 1 ) (2)
- Từ (1) và (2) ta có pt sau:
m 2 .( t 2 - t) = m 1 .( t ' - t 1 )
⇒ 4.(60 – t) = 2.(21,95 – 20)
⇒ t = 59,025°C
- Thay vào (2) ta được
m.(59,025 – 20) = 2.(21,95 – 20)
⇒ m = 0,1 (kg)
Ta có: \(Q_{thu}=Q_{tỏa}\)
\(\Rightarrow36-t_1=t_2-36\)
\(\Rightarrow36-t_1=2t_1-36\) \(\Leftrightarrow t_1=24^oC\) \(\Rightarrow t_2=48^oC\)
Đáp án : A
- Gọi m 1 ; m 2 là lượng nước có trong bình 1, bình 2 lúc ban đầu.
- Khi đổ một lượng nước 0,05(kg) từ bình 2 sang bình 1. nước ở bình 1 có nhiệt độ cân bằng là 35 0 C .
- Ta có:
m 1 .c.(35 - 30) = 0,05.c.(60 - 35)
- Hay:
m 1 .5 = 0,05.25 ⇒ m 1 = 0,25 (kg)
- Sau khi đổ 0,05 (kg) từ bình 1 sang bình 2 thì nhiệt độ ở bình 2 sau khi cân bằng là 50 0 C ta lại có:
( m 2 – 0,05).c.(60 - 50) = 0,05.c(50 - 35)
⇒( m 2 – 0,05).10 = 0,05.15 ⇒ m 2 = 0,125 (kg)
mai mk chụp mk gửi cho nha .Bây h mk phải đi dự sinh nhật bạn thân của mk rồi