Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- tỉ lệ nghịch là 2 đại lượng đối nghịch nhau kiểu như cái này tăng thì cái kia giảm (tc thì xét tích tương ứng)
- tỉ lệ thuận là 2 đại lượng cùng tăng và cùng giảm (tc thì xét tỉ số)
Theo cách hiểu của t là thế
. Tỉ lệ thuận: Nếu đại lượng x tăng thì đại lượng y cũng tăng, đại lượng x giảm thì đại lượng y cũng giảm. Công thức: y = k.x (k là hằng số khác 0).
. Tỉ lệ nghịch: Nếu đại lượng x tăng lên thì đại lượng y giảm xuống, đại lượng y tăng lên thì đại lượng x giảm. Công thức: y = \(\frac{a}{x}\) hay a = x.y (a là hằng số khác 0)
Chúc bạn học tốt!
1. Định nghĩa
Hai đại lượng tỷ lệ thuận x và y liên hệ với nhau bởi công thức y = kx,(với k là một hằng số khác 0), thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ k.
Chú ý:
Khi đại lượng y tỉ lệ thuận với đại lượng x thì x cũng tỉ lệ thuận với y và ta nói hai đại lượng đó tỉ lệ thuận với nhau. Nếu y tỉ lệ thuận với x theo hệ số tỉ lệ k (khác 0) thì x tỉ lệ thuận với y theo hệ số tỉ lệ \(\frac{1}{k}.\)
2. Tính chất
- Tỉ số hai giá trị tương ứng của hai đại lượng tỉ lệ thuận luôn không đổi và bằng hệ số tỉ lệ.
\(\frac{y_1}{x_1}=\frac{y_2}{x_2}=\frac{y_3}{x_3}=...=k.\)
- Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia.
\(\frac{y_1}{y_2}=\frac{x_1}{x_2};\frac{y_1}{y_3}=\frac{x_1}{x_3}.\)
Haizz
Tìm bậc của đa thức:
a) \(A\left(x\right)=72x^2-2x-70\)
b) \(B\left(x\right)=x^2+73x+142\)
c) \(C\left(x\right)=x^2+3x+2\)
Chứng minh các đa thức sau vô nghiệm:
a) \(A\left(x\right)=x^2+k\)( với k>0)
b) \(B\left(x\right)=x^2+x+1\)
c) \(C\left(y\right)=y^2+2y+2\)
Nâng cao:
Cho đa thức một biến sau
\(F\left(x\right)=x^3+6x^2+11x+6\)
Tìm ngiệm của đa thức trên
Bài 1:
Giải:
Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)
\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)
\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)
+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)
+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)
+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(6,2;9,8;8,2\right)\)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
A) 2.15 = 3.10
=>\(\frac{2}{3}\)= \(\frac{10}{15}\); \(\frac{2}{10}\)= \(\frac{3}{15}\);\(\frac{15}{3}\)= \(\frac{10}{2}\);\(\frac{15}{10}\)= \(\frac{3}{2}\)
B) 4,5.(-10) = -9.5
=> \(\frac{4,5}{-9}\)= \(\frac{5}{-10}\); \(\frac{4,5}{5}\)= \(\frac{-9}{-10}\); \(\frac{-10}{-9}\)=\(\frac{5}{4,5}\);\(\frac{-10}{5}\)=\(\frac{-9}{4,5}\)
Tìm x,y,z biết:
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\)
Đây giải đi
làm nhanh và đúng chi tiết nhất sẽ dc tích
Tỉ lệ thức là đẳng thức của hai tỉ số \(\frac{a}{b}=\frac{c}{d}\)
Ta viết : \(\frac{a}{b}=\frac{c}{d}\)hoặc a:b=c:d với a, b, c, d là các số hạng
a,d là ngoại tỉ
b, c là trung tỉ
Tính chất:Nếu \(\frac{a}{b}=\frac{c}{d}\)thì ad=bc
chứng minh :Nếu \(\frac{a}{b}=\frac{c}{d}\)thì ad=bc
Ta có \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}.\left(bd\right)=\frac{c}{d}.\left(bd\right)\)
\(\Rightarrow\frac{a.b.d}{b}=\frac{c.d.b}{d}\)
\(a.d=c.b\)
Vậy Nếu \(\frac{a}{b}=\frac{c}{d}\)thì ad=bc
Tính chất 2:
Từ ad=bc với \(b,d\ne0\)\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)
* tương tự ta có: Nếu ad = bc và a, b, c, d ≠ 0 thì ta có các tỉ lệ thức
\(\frac{a}{b}=\frac{c}{d};\frac{a}{c}=\frac{b}{d};\frac{d}{b}=\frac{c}{a};\frac{d}{c}=\frac{b}{a}\)
mk giảng có thể đang còn thiếu , chỗ nào bạn ko hiểu thì hỏi mk