Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có hàm số g(x) = x 3 - 3 x 2 + 2 = m là hàm số chẵn nên đồ thị nhận trục Oy làm trục đối xứng.
+ Khi x≥ 0 ; g(x) = x3- 3x2+ 2
Do đó; đồ thị hàm số g(x) = x 3 - 3 x 2 + 2 có dạng như hình vẽ.
+ Dựa vào đồ thị suy ra phương trình x 3 - 3 x 2 + 2 = m có nhiều nghiệm thực nhất khi và chỉ khi -2< m< 2.
Chọn C.
Lời giải:
Chọn 1 quân bài từ cỗ 1, có 52 cách
Chọn 1 quân bài từ cỗ 2, có 52 cách
Chọn 1 quân bài từ cỗ 3, có 52 cách
$\Rightarrow$ tổng có $52^3$ cách
Chọn 1 quân bài bất kỳ từ cỗ 1, có 52 cách. Chọn 1 quân bài từ cỗ 2 mà không trùng chất với cỗ 1, có $52-13=39$ cách. Chọn 1 quân bài từ cỗ 3 mà không trùng chất với cỗ 1,2, có $39-13=26$ cách.
Số cách chọn 3 quân bài không trùng chất: $52.39.26$ (cách)
Xác suất: $\frac{52.39.26}{52^3}=\frac{3}{8}$
Chọn A
Hàm số f(x) = (x-6) x 2 + 4 xác định và liên tục trên đoạn [0;3].
Suy ra
với a là số nguyên và b, c là các số nguyên dương nên
a = - 12, b = 3, c = 13. Do đó: S = a + b + c = 4.
Câu 1: Không gian mẫu là số cách lấy được \(2\)viên bi trong \(11\)viên. \(n\left(\Omega\right)=C^2_{11}\)
\(A\)là biến cố lấy được hai viên bi đỏ. \(n\left(A\right)=C^2_5\)
Xác suất cần tìm là: \(\frac{n\left(A\right)}{n\left(\Omega\right)}=\frac{2}{11}\).
Câu 2: Tương tự câu 1.
Xác suất là \(\frac{C^1_{15}.C^2_{85}}{C^3_{100}}=\frac{51}{154}\)
a, A''Có đúng 2 nữ''
\(C^2_3.C_{56}^2\)
\(P\left(A\right)=\dfrac{C_3^2.C_{56}^2}{C_{59}^4}\)
b, B''Có ít nhất 2 nam''
TH1 : Có 2 nam \(C_{56}^2.C_3^2\)
TH2 : Có 3 nam \(C_{56}^3.C_3^1\)
TH3 : Có 4 nam \(C^4_{56}\)
\(\Rightarrow C_{56}^2.C_3^2+C_{56}^3.C_3^1+C_{56}^4\)
\(P\left(B\right)=\dfrac{C_{56}^2.C_3^2+C_{56}^3.C_3^1+C_{56}^4}{C_{59}^4}\)
c, C''Có nhiều nhất 2 nam''
TH1 : Có 1 nam \(C_{56}^1.C_3^3\)
TH2 : Có 2 nam \(C_{56}^2.C_3^2\)
\(\Rightarrow C_{56}^2.C_3^3+C_{56}^2.C_3^2\)
\(P\left(C\right)=\dfrac{C_{56}^2.C_3^3+C^2_{56}.C_3^2}{C_{59}^4}\)