Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi T là biến cố "Lấy được thẻ có ghi số chia hết cho 3".
\(\left|\Omega\right|=C^2_{17}\)
TH1: Lấy được 1 thẻ có ghi số chia hết cho 3.
\(\Rightarrow\) Có \(C^1_5.C^1_{12}\) cách lấy.
TH2: Lấy được 2 thẻ có ghi số chia hết cho 3.
\(\Rightarrow\) Có \(C^2_5\) cách lấy.
\(\Rightarrow\left|\Omega_T\right|=C^1_5.C^1_{12}+C^2_5\)
\(\Rightarrow P\left(T\right)=\dfrac{\left|\Omega_T\right|}{\left|\Omega\right|}=\dfrac{C^1_5.C^1_{12}+C^2_5}{C^2_{17}}=\dfrac{35}{68}\)
1. Từ 1->100 dãy các số chia hết cho 4 là:
4,8,....,96,100. có 25 số hạng
Từ 1->100 dãy các số chia hết cho 9 là:
9,18,....,90,99. có 11 số hạng
Từ 1->100 dãy các số là bội cung của 4 và 9 là: 36,72. có 2 số hạng
=> Tổng các số chia hết cho 4 hoặc 9 là: 25+11-2=34(số hạng)
Vậy xác suất để số trên tấm thẻ là bội của 4 hoặc 9 là:34/100=0,34
2. Để tích 2 số là bội của 5 thì trong 2 số có 1 số là bội của 5 hoặc cả 2 số đều là bội của 5
Từ 1->100 dãy các số là bội của 5 là:
5,10,....95,100 . có 20 số hạng
Xét biến cố A: trong 2 tấm thẻ không có số nào là bội của 5
Số trường hợp xảy ra biến cố là: \(C_{80}^2=3160\)
kHÔNG GIÁN mẫu khi lấy 2 số tử 100 số:\(C_{100}^2=4950\)
=> Xác suất biến cố đề cho chính là phủ định của biến cố A
=> \(P\left(\overline{A}\right)=1-p\left(A\right)=1-\frac{3160}{4950}=\frac{179}{495}\)
Đáp án D
Các trường hợp thẻ lấy thỏa mãn đề bài là 3, 9, 15
Suy ra xác suất lấy được thẻ đó là 3 20 = 0 , 15 .
a. Không gian mẫu: \(C_{10}^3\)
Số cách chọn 3 số nguyên liên tiếp: 8 cách (123; 234;...;8910)
Số cách chọn ra 3 số trong đó có đúng 2 số nguyên liên tiếp:
- Cặp liên tiếp là 12 hoặc 910 (2 cách): số còn lại có 7 cách chọn
- Cặp liên tiếp là 1 trong 7 cặp còn lại: số còn lại có 6 cách chọn
Vậy có: \(C_{10}^3-\left(8+2.7+7.6\right)=56\) bộ thỏa mãn
Xác suất: \(P=\dfrac{56}{C_{10}^3}=...\)
b.
Có 2 số chia hết cho 4 là 4 và 8
Rút ra k thẻ: \(C_{10}^k\) cách
Số cách để trong k thẻ có ít nhất 1 thẻ chia hết cho 4: \(C_{10}^k-C_8^k\)
Xác suất thỏa mãn: \(P=\dfrac{C_{10}^k-C_8^k}{C_{10}^k}>\dfrac{13}{15}\)
\(\Leftrightarrow\dfrac{2}{15}>\dfrac{C_8^k}{C_{10}^k}=\dfrac{\dfrac{8!}{k!\left(8-k\right)!}}{\dfrac{10!}{k!\left(10-k\right)!}}=\dfrac{\left(9-k\right)\left(10-k\right)}{90}\)
\(\Leftrightarrow\left(9-k\right)\left(10-k\right)-12< 0\Leftrightarrow k^2-19k+78< 0\)
\(\Rightarrow6< k< 13\)
B = {5,10,15,20,25,30}, n(B) = 6
⇒P(B) =6/30 =1/5
Chọn đáp án là B
Nhận xét: học sinh có thể nhầm với số thẻ và số ghi trên thẻ, hoặc vận dụng nhầm công thức P(A) =(n(Ω))/(n(A)) dẫn đến các phương án khác còn lại.
a/ \(C_{12}^3\)
b/ \(\frac{C_3^3+C_4^3+C_5^3}{C_{12}^3}\)
c/ \(\frac{C_4^3+C_4^2.C_8^1}{C_{12}^3}\)
d/ Có 3 cách lấy 1 tấm thẻ xanh, 3 cách để lấy thẻ đỏ khác số với thẻ xanh và 3 cách để lấy thẻ vàng khác số với 2 thẻ trước đó
Vậy có \(3.3.3\) cách lấy
Xác suất: \(\frac{3.3.3}{C_{12}^3}\)