Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Do biểu thức trên là tích của 3 số liên tiếp nên tồn tại trong các thừa số: 1 thừa số \(⋮\text{ }2\) và 1 thừa số \(⋮\text{ }3\)
Mà 2 và 3 là 2 số nguyên tố cùng nhau
\(\Rightarrow n^3-n⋮2\cdot3=6\)
\(\hept{\begin{cases}x+y=a+b\\x^2+y^2=a^2+b^2\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=a+b\\x^2-a^2=b^2-y^2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x-a=b-y\\\left(x-a\right)\left(x+a\right)=\left(y-b\right)\left(y+b\right)\end{cases}}\) (1)
Nếu \(x=a;y=b\Rightarrow x^n+y^n=a^n+b^n\)
Nếu \(x\ne a;x\ne b\) Từ \(\left(1\right)\Rightarrow x+a=-y-b\Rightarrow x+y=-a-b\)
Mà \(x+y=a+b\Rightarrow-a-b=a+b\Leftrightarrow2\left(a+b\right)=0\Rightarrow\hept{\begin{cases}a=-b\\x=-y\end{cases}}\)
\(\Rightarrow x^n+y^n=a^n+b^n=0\)
Vì đây là 7 số nguyên liên tiếp
nên A chia hết cho 7!
=>A chia hết cho 5040
=>A chia hết cho 210
\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)⋮6\forall n\)(vì đó là tích 3 số tự nhiên liên tiếp).