Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{1}+\sqrt{2}}+....\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\) (40 số)
................................................................\(>\frac{40}{10}=4\)
=>đpcm
hc tốt
ko chắc lắm :)
Ta có:
\(\frac{1}{\sqrt{1}+\sqrt{2}}>\frac{1}{\sqrt{2}+\sqrt{3}};\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{\sqrt{4}+\sqrt{5}};...;\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{\sqrt{80}+\sqrt{81}}\)
Do đó \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\right)\)\(>\frac{1}{2}\left(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
\(=\frac{1}{2}\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{80}-\sqrt{79}+\sqrt{81}-\sqrt{80}\right)\)
\(=\frac{1}{2}\left(-\sqrt{1}+\sqrt{81}\right)=\frac{1}{2}\left(-1+9\right)=4\)
Suy ra đpcm.
Đặt \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{79}}\)
Suy ra
\(2A=2\left(\frac{1}{\sqrt{2}+\sqrt{1}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\right)\)
\(=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+....+\left(\sqrt{80}-\sqrt{79}\right)+\left(\sqrt{81}-\sqrt{79}\right)\)
\(=\sqrt{81}-1=9-1=8\Rightarrow2A>8\Leftrightarrow A>8\)( Đpcm)
Đặt \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
Ta có: \(\frac{1}{1+\sqrt{2}}>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)\)
...
\(\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{2}\left(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
Cộng các bất đẳng thức trên lại với nhau, ta được:
\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{81}-\sqrt{80}}{81-80}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{81}-1\right)=\frac{1}{2}\cdot\left(9-1\right)=\frac{1}{2}\cdot8=4\)
\(\Leftrightarrow A>4\)(đpcm)
Ta chứng minh được \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\) với mọi n là số tự nhiên lớn hơn 0
Đặt \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
Ta có \(2A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}>\)
\(>\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\sqrt{5}-\sqrt{4}+...+\sqrt{80}-\sqrt{79}+\sqrt{81}-\sqrt{80}\)
\(=\sqrt{81}-\sqrt{1}=8\)
\(\Rightarrow2A>8\Rightarrow A>4\)
\(S=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(\Leftrightarrow2S=\frac{1}{1+\sqrt{2}}+\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(>\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)
\(=\sqrt{81}-\sqrt{1}=9-1=8\)
\(\Rightarrow S>\frac{8}{2}=4\)
Với mọi n thuộc N ta có :
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\left(n+1\right)-n}=\sqrt{n+1}-\sqrt{n}\)
Áp dụng ta được :
\(A=\sqrt{2}-\sqrt{1}+\sqrt{4}-\sqrt{3}+....+\sqrt{80}-\sqrt{79}\)
\(=\left(\sqrt{2}+\sqrt{4}+...+\sqrt{80}\right)-\left(\sqrt{1}+\sqrt{3}+...+\sqrt{79}\right)\)
Đến đây tịt òy ai vô giải nối với :((((((((((
Ta có:
\(2A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)
> \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\)
\(=\sqrt{81}-\sqrt{1}=9-1=8\)
\(\Rightarrow A>4\)
Tổng quát ta có: Với \(n\inℕ\)ta có:
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\left(n+1\right)-n}{\sqrt{n}+\sqrt{n+1}}\)
\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)
Với \(n=2\)\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}\)
Với \(n=3\)\(\Rightarrow\frac{1}{\sqrt{3}+\sqrt{4}}=\sqrt{4}-\sqrt{3}\)
...........................
Với \(n=79\)\(\Rightarrow\frac{1}{\sqrt{79}+\sqrt{80}}=\sqrt{80}-\sqrt{79}\)
\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+.....+\frac{1}{\sqrt{79}+\sqrt{80}}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+......+\sqrt{80}-\sqrt{79}\)
\(=\sqrt{80}-\sqrt{2}=\sqrt{40.2}-\sqrt{2}=\sqrt{40}.\sqrt{2}-\sqrt{2}\)
\(=\sqrt{2}.\left(\sqrt{40}-1\right)>\sqrt{2}.\left(\sqrt{36}-1\right)\)
\(=\sqrt{2}.\left(6-1\right)=5\sqrt{2}>4\)( đpcm )