Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét: \(\left(n+1\right)\sqrt{n}=\sqrt{\left(n+1\right)^2n}=\sqrt{\left(n+1\right)n\left(n+1\right)};n\sqrt{n+1}=\sqrt{n^2\left(n+1\right)}=\sqrt{n.n\left(n+1\right)}\)
=> \(\left(n+1\right)\sqrt{n}>n\sqrt{n+1}\) => \(2.\left(n+1\right)\sqrt{n}>\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\)
=> \(\frac{2}{2.\left(n+1\right)\sqrt{n}}<\frac{2}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{2}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)
=> \(\frac{1}{\left(n+1\right)\sqrt{n}}<\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}.\left(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\right)}=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng ta có:
\(\frac{1}{2\sqrt{1}}<2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)\)
....
\(\frac{1}{3\sqrt{2}}<2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)
\(\frac{1}{\left(n+1\right)\sqrt{n}}<2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
=> A < \(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(1-\frac{1}{\sqrt{n+1}}\right)<2\)
Vậy A < 2
Ta có:
\(\frac{1}{\left(n-1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)<2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Dễ dàng giải tiếp bài toán
Ta co:
\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n+1}.\sqrt{n}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Ap vào bài toan được
\(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)
\(< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)
Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{2}{2\left(n+1\right)\sqrt{n}}<\)\(\frac{2}{\left(n+1\right)\sqrt{n}+\sqrt{n+1}.n}=\frac{2}{\sqrt{n+1}\sqrt{n}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=2.\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow\frac{1}{2\sqrt{1}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}<\)\(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)<\)\(2\)