\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}<2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{2}{2\left(n+1\right)\sqrt{n}}<\)\(\frac{2}{\left(n+1\right)\sqrt{n}+\sqrt{n+1}.n}=\frac{2}{\sqrt{n+1}\sqrt{n}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=2.\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}\sqrt{n}}=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow\frac{1}{2\sqrt{1}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}<\)\(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)<\)\(2\)

9 tháng 8 2015

Nhận xét: \(\left(n+1\right)\sqrt{n}=\sqrt{\left(n+1\right)^2n}=\sqrt{\left(n+1\right)n\left(n+1\right)};n\sqrt{n+1}=\sqrt{n^2\left(n+1\right)}=\sqrt{n.n\left(n+1\right)}\)

=> \(\left(n+1\right)\sqrt{n}>n\sqrt{n+1}\) => \(2.\left(n+1\right)\sqrt{n}>\left(n+1\right)\sqrt{n}+n\sqrt{n+1}\)

=> \(\frac{2}{2.\left(n+1\right)\sqrt{n}}<\frac{2}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{2}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)

=> \(\frac{1}{\left(n+1\right)\sqrt{n}}<\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}.\left(\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2\right)}=2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng ta có: 

\(\frac{1}{2\sqrt{1}}<2.\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\right)\)

....

\(\frac{1}{3\sqrt{2}}<2.\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)\)

\(\frac{1}{\left(n+1\right)\sqrt{n}}<2.\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

=> A < \(2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(1-\frac{1}{\sqrt{n+1}}\right)<2\)

Vậy A < 2

9 tháng 8 2015

Ta có:

\(\frac{1}{\left(n-1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)<2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)  

Dễ dàng giải tiếp bài toán

17 tháng 9 2018

Ta co:

\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1+n}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n+1}.\sqrt{n}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Ap vào bài toan được

\(S_n=\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}\)

\(< \frac{1}{2}\left(\frac{1}{1}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)

1 tháng 4 2020

iopdtg5 r4ytr'hfgo;hrt687y5t53434]\trvf;lkg

17 tháng 8 2018

Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.

20 tháng 10 2018

Quy đồng hết lên

CHú yys : nên c/m từng cái một thì hơn

/

16 tháng 11 2018

mèo conavt2714691_60by60.jpg