Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\ \dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\ .........\\ \dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)
\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+....+\dfrac{1}{\sqrt{100}}\)( 100 phân số \(\dfrac{1}{\sqrt{100}}\) )
hay \(A>\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+....+\dfrac{1}{10}\)(100 phân số \(\dfrac{1}{10}\) )
\(\Rightarrow A>\dfrac{100}{10}\\ \Rightarrow A>10\)
KL : Vậy ....
`1)` Ta có `:` `1/sqrt1;1/sqrt2;1/sqrt3;…;1/sqrt99>1/sqrt100`
`=>` `1/sqrt1+1/sqrt2+1/sqrt3+…+1/sqrt99+1/sqrt100>100. 1/sqrt100=100/10=10`
`=>` `đpcm`
Ta có:
\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{10}\)
...
\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>100.\dfrac{1}{10}=10\).
Ta có:
\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(...............\)
\(\dfrac{1}{\sqrt{98}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
Cộng theo vế ta có:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}=\dfrac{99}{10}\)
Lại có \(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\) suy ra:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}=\dfrac{100}{10}=10\)
Ta có:
1/√1>1/√100=1/10
1/√2>1/√100=1/10
........
1/√100=1/√100=1/10
Nên:
1/√1+1/√2+...+1/√100>1/10+1/10+...+1/10(100 phân số 1/10)
=1/√1+1/√2+..+1/√100>100/10
1/√1+1/√2+..+1/√100>10(đpcm)
Ta có :
\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{`100}}=\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
........................................
\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.......+\dfrac{1}{\sqrt{100}}>\dfrac{1}{10}+\dfrac{1}{10}+........+\dfrac{1}{10}=\dfrac{100}{10}=10\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+......+\dfrac{1}{\sqrt{100}}>10\left(đpcm\right)\)
Giải:
Ta thấy:
\(\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)
\(\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)
\(\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)
...................................
\(\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)
\(\dfrac{1}{\sqrt{100}}=\dfrac{1}{10}.\)
\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}.\)
\(>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}.\)
\(=\dfrac{1}{10}+\dfrac{1}{10}+\dfrac{1}{10}+...+\dfrac{1}{10}\) (100 số hạng \(\dfrac{1}{10}\)).
\(=\dfrac{100}{10}=10.\)
\(\Rightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\left(đpcm\right).\)
Vậy..........
Ta có:
\(\sqrt{1}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\)
\(\sqrt{2}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\)
\(\sqrt{3}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{3}}>\dfrac{1}{\sqrt{100}}\)
\(.............................\)
\(\sqrt{99}< \sqrt{100}\Rightarrow\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\)
\(\sqrt{100}=\sqrt{100}\Rightarrow\dfrac{1}{\sqrt{100}}=\dfrac{1}{\sqrt{100}}\)
Cộng từng vế của các BĐT trên ta được:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)
\(=\dfrac{100}{\sqrt{100}}=\dfrac{100}{10}=10\)
Vậy \(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}>10\) (Đpcm)
Ta có:
1/ căn 1> 1/10
1/ căn 2> 1/10
...
1/ căn 99> 1/10
1/ căn 100 = 1/10
=> 1/ căn 1 + 1/ căn 2 + ... + 1/ căn 99 + 1/ căn 100 > 100 . 1/10 = 10 (đpcm)
1/√1 > 1/10
1/√2 > 1/10
1/√3 > 1/10
....................
1/√99 > 1/10
1/√100 = 1/10
Cộng từng vế ta có:
1/√1 + 1/√2 + 1/√3 + ... + 1/√100 >100.1/0 = 10 (Đpcm)
\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}\)
\(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{1}}>\dfrac{1}{\sqrt{100}}\\\dfrac{1}{\sqrt{2}}>\dfrac{1}{\sqrt{100}}\\.............\\\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}\end{matrix}\right.\)
Suy ra:
\(\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+....+\dfrac{1}{\sqrt{99}}>\dfrac{1}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}+...+\dfrac{1}{\sqrt{100}}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{99}}>\dfrac{99}{\sqrt{100}}\)
\(linh=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+.....+\dfrac{1}{\sqrt{99}}+\dfrac{1}{\sqrt{100}}>\dfrac{99}{\sqrt{100}}+\dfrac{1}{\sqrt{100}}\)
\(\)\(linh>10\left(đpcm\right)\)
Bài này ko phải 100 nhé
bạn nào giải giúp mình với