Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}\)
\(A=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+\dfrac{2}{\sqrt{n}+\sqrt{n}}\)
\(A>2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)
\(A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)\)
\(A>2\left(\sqrt{n+1}-1\right)\)
Cần cm:\(2\left(\sqrt{n+1}-1\right)>\sqrt{n}\)
\(\Leftrightarrow4\left(n+1\right)+4-8\sqrt{n+1}>n\)
\(\Leftrightarrow3n+8>8\sqrt{n+1}\)
Lại có:\(8\sqrt{n+1}\le2\left(n+1\right)+8=2n+10\le3n+8\)(AM-GM)
Dấu "=" không xảy ra
=>đpcm
Lời giải
Với mọi $n\in\mathbb{N}$ ta có:
\(\frac{1}{\sqrt{1}}> \frac{1}{\sqrt{n}}\)
\(\frac{1}{\sqrt{2}}> \frac{1}{\sqrt{n}}\)
.....
Do đó:
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}> \underbrace{\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}}_{\text{n số}}=\frac{n}{\sqrt{n}}=\sqrt{n}\)
(chứng minh xong vế 1)
Vế 2:
\(\frac{1}{2\sqrt{1}}+\frac{1}{2\sqrt{2}}+...+\frac{1}{2\sqrt{n}}< \frac{1}{\sqrt{0}+\sqrt{1}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}\)
\(=\frac{\sqrt{1}-\sqrt{0}}{1-0}+\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{n}-\sqrt{n-1}}{n-(n-1)}\)
\(=\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}+...+\sqrt{n}-\sqrt{n-1}=\sqrt{n}\)
\(\Rightarrow \frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}\) (đpcm)
Vậy....
Lời giải:
\(\frac{n-1}{n!}=\frac{n}{n!}-\frac{1}{n!}=\frac{1}{(n-1)!}-\frac{1}{n!}\). Do đó:
\(\text{VT}=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-....+\frac{1}{(n-1)!}-\frac{1}{n!}=1-\frac{1}{n!}< 1\)
Ta có đpcm.