Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A có 2001 số hạng,chia làm 667 nhóm,mỗi nhóm 3 số liên tiếp từ trái sang phải
A=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^1998+3^1999+3^2000)
A=13+3^3.(1+3+3^2)+....+3^1998.(1+3+3^2)
A=13+3^3.13+...+3^1998.13
A=13.(1+3^3+...+3^1998) chia hết cho 13
Vậy A chia hết cho 13
Chúc bạn học tốt,ùng hộ mình ha^^
Bạn ơi,3^1001 chứ ko phải 3^1000 như ở đề bài nha^^
Ta có: A = 1 + 3 + 32 + 33 +...+31999 + 32000
=> A = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 + 36 ) + ( 37 + 38 + 39 + 310 ) + ... + ( 31997 + 31998 + 31999 + 32000)
=> A = 13 + 33 . ( 1 + 3 + 32 ) + 37 . ( 1 + 3 + 32 ) + ... + 31997 . ( 1 + 3 + 32 )
=> A = 13 + 33 . 13 + 37 . 13 + ... + 31997 . 13
=> A = 13 . ( 1 + 33 + 37 + ... + 31997 )
=> A chia hết cho 13
Vậy A chia hết cho 13
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
A=Số thừa số của (-1) là:1+2+3+4+5+...+100=(1+100).100:2=5050
do 5050 là số chẵn => A=1
_Minh ngụy_
a) ( 1000-13) . ( 1000-23) . ( 1000-33) ...( 1000 -503)
\(=\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot...\cdot\left(1000-10^3\right)\cdot.....\cdot\left(1000-50^3\right)\)
\(=\left(1000-1^3\right)\cdot\left(100-2^3\right)\cdot...\cdot\left(1000-1000\right)\cdot...\cdot\left(1000-50^3\right)\)
\(=\left(1000-1^3\right)\cdot\left(1000-2^3\right)\cdot......\cdot0\cdot......\left(1000-50^3\right)\)
\(=0\)
b) (1/125-1/13) . (1/125-1/23).( 1/125-1/33)...( 1/125-1/253)
\(\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{5^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{125}\right)\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\cdot\left(\frac{1}{125}-\frac{1}{2^3}\right)\cdot....\cdot0\cdot...\cdot\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=0\)
A=1+919+99199+19991999 = 1+B(3)+B(3)+(1998+1)1999 = 1+B(3)+B(3)+1= B(3)+2= 3k+2 (k thuộc N)
Mà ko có số chính phương nào chia 3 dư 2
Nên A ko phải số chính phương
( B(3) tức là bội của 3)