Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-1/2+1/3-1/4+......-1/1000
=(1+1/3+1/5+......+1/999)-(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+1/4+.....+1/1000)-2(1/2+1/4+.......+1/1000)
=(1+1/2+1/3+.........+1/1000)-(1+1/2+.....+1/500)
=1/501 +1/502+1/503+.....+1/1000 ;
mat khác:
500-500/501-501/502-.....-999/1000
=(1-500/501)+(1-501/502)+.....+(1-999/1000)=1/501+1/502+....+1/1000
=>D=1
Ta có: \(\dfrac{1}{501}< \dfrac{1}{500}\)
\(\dfrac{1}{502}< \dfrac{1}{500}\)
\(\dfrac{1}{503}< \dfrac{1}{500}\)
..................
\(\dfrac{1}{1000}< \dfrac{1}{500}\)
\(\Rightarrow\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< \dfrac{1}{500}+\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)
\(\Rightarrow\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< \dfrac{500}{500}=1\)
Vậy \(\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}< 1\)
Đặt A = \(\dfrac{1}{501}+\dfrac{1}{502}+\dfrac{1}{503}+...+\dfrac{1}{1000}\)
Ta thấy A có 500 phân số.
Ta có: \(\dfrac{1}{501}< \dfrac{1}{500}\\ \dfrac{1}{502}< \dfrac{1}{500}\)
....................
\(\dfrac{1}{1000}< \dfrac{1}{500}\)
\(\Rightarrow\) A< \(\dfrac{1}{500}+\dfrac{1}{500}+...+\dfrac{1}{500}\)( có 500 phân số \(\dfrac{1}{500}\))
\(\Rightarrow A< 500.\dfrac{1}{500}\\ \Rightarrow A< \dfrac{500}{500}\\ \Rightarrow A< 1\)
Chắc là bạn hiểu chứ ?
b) Vế trái = \(\left(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{999}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{1000}\right)\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{1000}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{999}+\frac{1}{1000}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{500}\right)\)
= \(\frac{1}{501}+\frac{1}{502}+...+\frac{1}{1000}\)= Vế phải
=> đpcm
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{999}-\frac{1}{1000}\)
\(=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{999}+\frac{1}{1000}-2\left(\frac{1}{2}+\frac{1}{4}+......+\frac{1}{1000}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{999}+\frac{1}{1000}-1-\frac{1}{2}-......-\frac{1}{500}\)
\(=\frac{1}{501}+\frac{1}{502}+.......+\frac{1}{1000}\)
\(\Rightarrowđpcm\)