K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2020

\(\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)

\(=\text{[}\left(x+y\right)\left(x+4y\right)\text{]}\text{[}\left(x+2y\right)\left(x+3y\right)\text{]}+y^4\)

\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)

\(=\text{[}\left(x^2+5xy\right)+4y^2\text{]}\text{[}\left(x^2+5xy\right)+6y^2\text{]}+y^4\)

\(=\left(x^2+5xy\right)^2+10y^2\left(x^2+5xy\right)+25y^4=\left(x^2+5xy+5y^2\right)\)

Vậy đề bài là số chính phương.

3 tháng 1 2016

Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4
= (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y4 
Đặt x2 + 5xy + 5y2 = t ( t  Z) thì
A = (t - y2)( t + y2) + y4 = t2 –y4 + y4 = t2 = (x2 + 5xy + 5y2)2 
V ì x, y, z  Z nên x2  Z, 5xy  Z, 5y2  Z  x2 + 5xy + 5y2  Z
Vậy A là số chính phương.

25 tháng 12 2018

Bài 1: Chứng minh rằng mọi số nguyên x, y thì:

A = (x + y)(x + 2y)(x + 3y)(x + 4y) + là số chính phương.

Giải: Ta có A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4

= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4

Đặt x2 + 5xy + 5y2 = t (t ∈ Z) thì

A = (t - y2)(t + y2) + y4 = t2 - y4 + y4 = t2 = (x2 + 5xy + 5y2)2

Vì x, y, z ∈ Z nên x2 ∈ Z, 5xy ∈ Z, 5y2 ∈ Z => (x2 + 5xy + 5y2) ∈ Z

Vậy A là số chính phương.

25 tháng 12 2018

Bài 2: Chứng minh tích của 4 số tự nhiên liên tiếp cộng 1 luôn là số chính phương.

Giải: Gọi 4 số tự nhiên, liên tiếp đó là n, n + 1, n + 2, n + 3 (n ∈ Z). Ta có:

n(n + 1)(n + 2)(n + 3) + 1 = n . ( n + 3)(n + 1)(n + 2) + 1

= (n2 + 3n)(n2 + 3n + 2) + 1 (*)

Đặt n2 + 3n = t (t ∈ N) thì (*) = t(t + 2) + 1 = t2 + 2t + 1 = (t + 1)2

= (n2 + 3n + 1)2

Vì n ∈ N nên n2 + 3n + 1 ∈ N. Vậy n(n + 1)(n + 2)(+ 3) + 1 là số chính phương.

12 tháng 10 2015

khó + lười + nhiều = không làm

16 tháng 5 2019

Hello

5 tháng 10 2018

Mình làm một câu để bạn tham khảo, sau đó bạn áp dụng làm các bài còn lại nha ^^

Có gì không hiểu bạn ib nha ^^

1. \(2x=3y-2x\left(1\right)\)\(x+y=14\)

\(\left(1\right)\Leftrightarrow4x=3y\)

\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\)

Theo tính chất dãy tỉ số bằng nhau, có:

\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{14}{7}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.4=8\end{matrix}\right.\)

Bạn tự kết luận ^^

5 tháng 10 2018

sao nhieu bt the ban

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

a.

$7x-2y=5x-3y$

$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:

$-y+3y=20$

$2y=20$

$\Rightarrow y=10$. 

$x=\frac{-y}{2}=\frac{-10}{2}=-5$

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

b.

$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$

$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$

$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$

Áp dụng tính chất dãy tỉ số bằng nhau:

$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$

$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$ 

 

26 tháng 7 2021

a, Ta có : \(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{126}{7}=-18\)

\(x=-90;y=-54;z=-72\)

26 tháng 7 2021

b, \(5x=2y;3y=5z\Rightarrow\frac{x}{2}=\frac{y}{5};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)

\(x=-194;y=-485;z=-291\)

23 tháng 3 2018

Mik viết lại đề bài !

Thu gọn đa thức :

\(x^3y^4-x^2y^2+y^6-5x^3y^4-6x^2y^2+3y^6-5x^2y^2+4y^6\\ =x^2y^4\left(1-5\right)-x^2y^2\left(1+6+5\right)+y^6\left(1+3+4\right)\\ =-4x^2y^4-12x^2y^2+8y^6\\ =4y^2\left(-x^2y^2-3x^2+2y^4\right)\)

2 tháng 6 2018

b và ''le thi hong van'' là 1, chắc chắn luôn, vì b ấy toàn nick cho b thôi :))