Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
\(=3\)
Vậy bt trên ko phụ vào biến x
b) \(x\left(3x^2-x+5\right)-\left(2x^3+3x-16\right)-x\left(x^2-x+2\right)\)
\(=3x^3-x^2+5x-2x^3-3x+16-x^3+x^2-2x\)
\(=16\)
Vậy bt trên ko phụ vào biến x
a) \(C=\left(\dfrac{x}{x^2-x-6}-\dfrac{x-1}{3x^2-4x-15}\right):\dfrac{x^4-2x^2+1}{3x^2+11x+10}\cdot\left(x^2-2x+1\right)\) (ĐK: \(x\ne-\dfrac{5}{3};x\ne3;x\ne-2;x\ne1\))
\(C=\left[\dfrac{x}{\left(x-3\right)\left(x+2\right)}-\dfrac{x-1}{\left(x-3\right)\left(3x+5\right)}\right]:\dfrac{\left(x^2-1\right)^2}{\left(3x+5\right)\left(x+2\right)}\cdot\left(x-1\right)^2\)
\(C=\left[\dfrac{x\left(3x+5\right)}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(3x+5\right)\left(x+2\right)}\right]\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{3x^2+5x-x^2-2x+x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{2x^2+4x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2\left(x+1\right)^2}{\left(3x+5\right)\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}\)
b) Thay x = 2003 ta có:
\(C=\dfrac{2}{\left(2003-1\right)^4\left(2003-3\right)}=\dfrac{2}{2002^4\cdot2000}=\dfrac{1}{2002^4\cdot1000}\)
c) \(C>0\) khi:
\(\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}>0\) mà: \(\left\{{}\begin{matrix}2>0\\\left(x-1\right)^4>0\end{matrix}\right.\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\) (đpcm)
Bài 1.
1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15
<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15
<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15
<=> 12x2 + 15 = 15
<=> 12x2 = 0
<=> x = 0
2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13
<=> x( x2 - 16 ) - ( x3 - 53 ) = 13
<=> x3 - 16x - x3 + 125 = 13
<=> 125 - 16x = 13
<=> 16x = 112
<=> x = 7
Bài 2.
A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )
= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x
= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x
= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )
B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x3 + 3x( x - 1 )
= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x
= 7 ( đpcm )
C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15
= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15
= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15
= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]
= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )
= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )
= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )
= 64x3 - 16 + 704x3 + 528x2 + 180x + 23
= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )
mình sửa lại câu b nha
3(2x-1)-5(x-3)+6(3x-4)-19x
=6x-3-5x+15+18x-24-19x
=(6x-5x+18x-19x)-(3-15+24)
=12
a) x(3x+12)-(7x-20)+ x2(2x-3)-x(2x2+5)
=3x2+12x-7x+20+2x3-3x2-2x3-5x
= (3x2-3x2)+(12x-7x-5x)+(2x2-2x2)+20
=20
Sau khi rút gọn thì giá trị của bt là 20. Vì vậy giá trị của bt trên không phụ thuộc vào giá trị của biến
b) 3(2x-1)-5(x-3)+6(3x-4)-19x
=6x-3-5x-15+18x-24-19x
=(6x-5x+18x-19x)-(3+15+24)
= -42
KL thì tương tự giông câu a
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
a) \(x^4-2x^3+4x^2-3x+2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+3x^2-3x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)+3\left(x^2-x+\frac{1}{4}\right)+\frac{5}{4}=0\)
\(\Leftrightarrow\left(x^2-x\right)^2=3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}=0\)
Vì (x2 -x )2 \(\ge0\)với mọi x
\(\Rightarrow\left(x^2-x\right)^2+3\left(x-\frac{1}{2}\right)^2+\frac{5}{4}>0\)với mọi x
=> Phương trình trên vô nghiệm - đpcm
b) Ta có
x6+x5+x4+x3+x2+x+1=0
Nhận thấy x = 1 không là nghiệm của phương trình. Nhân cả hai vế của phương trình với x-1 được :
(x−1)(x6+x5+x4+x3+x2+x+1)=0
⇔x7−1=0
⇔x7=1
⇔x=1
(vô lí)
Điều vô lí chứng tỏ phương trình vô nghiệm.
\(VT=x\left(x^2+3x+2\right)=x^3+3x^2+2x\)