Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hơi ngán dạng này :((((
a, \(x^2-3x+5=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+5=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)
b,
\(x^2-\frac{1}{3}x+\frac{5}{4}=x^2-2.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{5}{4}=\left(x-\frac{1}{6}\right)^2+\frac{11}{9}>0\forall x\)
c,
\(x-x^2-3=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{4}-3=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}< 0\forall x\)d,
\(x-2x^2-\frac{5}{2}=-2\left(x^2-\frac{1}{2}x+\frac{5}{4}\right)=-2\left(x^2-2.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{4}\right)=-2\left[\left(x-\frac{1}{4}\right)^2+\frac{19}{16}\right]=-2\left(x-\frac{1}{4}\right)^2-\frac{19}{8}< 0\forall x\)P/s : ko chắc lém :)))
a)Ta có: x2+x+1
=x2+2.x.1/2+1/4+3/4
=(x+1/2)2+3/4
Vì (x+1/2)2>=0 với mọi x
=>(x+1/2)2+3/4>0 với mọi x
Vậy x2+x+1>0 với mọi x.
b)Ta có: -5-x2+2x
=-(x2-2x+5)
=-(x2-2x+1+4)
=-(x-1)2-4
Ta có:(x-1)2>=0 với mọi x
=>-(x-1)2<=0 với mọi x
=>-(x-1)2-4<0 với mọi x
Vậy -5-x2+2x<0 với mọi x
a) x2+x+1 = \(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
= \(x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
=\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Do \(\left(x+\frac{1}{2}\right)^2\le0\)vs mọi x => \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)vs mọi x
=> x^2 + x + 1 > 0 vs mọi x
b) -5-x^2 + 2x = -(x^2 - 2x + 5) = \(-\left(x^2-2x+1+4\right)=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\)
Do \(-\left(x-1\right)^2\le0\)vs mọi x=> \(-\left(x-1\right)^2-4< 0\)vs mọi x
=> -5-x^2+2x<0 vs mọi x
a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)
Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)
\(\Rightarrow\left(x-10\right)^2+1>1>0\)
Vậy x2-20x+101 >0 với mọi x
b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)
Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)
\(\Rightarrow\left(2a+1\right)^2+1>1>0\)
Vậy 4a2+4a+2 > 0 với mọi a
c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)
\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)
\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)
a ) \(4x^2+2x+1=\left(2x\right)^2+2\cdot2x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
b ) \(x^2+3x+4=\left(x^2+2\cdot\frac{3}{2}\cdot x+\frac{9}{4}\right)+\frac{7}{4}=\left(x+\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
c ) \(9x^2+3x+5=\left(3x\right)^2+2\cdot3x\cdot\frac{1}{2}+\frac{1}{4}+\frac{19}{4}=\left(3x+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall x\)
Ta có : 4x2 + 2x + 1
= (2x)2 + 2.2x.\(\frac{1}{2}\) + \(\frac{1}{2}+\frac{3}{4}\)
= (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)
Mà : (2x + \(\frac{1}{2}\))2 \(\ge0\forall x\)
=> (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\)
Hay : (2x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(>0\forall x\)
Vậy 4x2 + 2x + 1 \(>0\forall x\)
Mk chỉ lm 1 bài còn lại cứ tương tự mà lm! Bn hx lớp 7 ak?
3) Ta có: x2 + 2x + 2 = (x2 + 2x +1 ) +1 = ( x+ 1)2 +1
Vì ( x+ 1)2 \(\ge\) 0 => ( x + 1)2 + 1 \(\ge\) 1 > 0 (đpcm)
Mình giúp 2 bài cuối thôi,các bài trên bạn có thể tự giải và 1 bài @Mỹ Duyên đã giải rồi.
4.Ta có: \(x^2-x+1=x^2-2.x.\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\)\(\geq\) 0 \(\Rightarrow\) \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\) \(\geq\) \(\dfrac{3}{4}\) > 1 \(\forall\) x
5.Ta có: \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
vì \(-\left(x-2\right)^2\) \(\leq\) 0 \(\Rightarrow\) \(-\left(x-2\right)^2-1\) \(\leq\) \(-1\) <0 \(\forall\) x
Bài 1:
a) Xét 4(x^2-5x+12)=4x^2-20x+48=[(2x)^2-2.2x.5+5^2] +23=(2x-5)^2+23 >= 0+23 > 0 với mọi x
=>x^2-5x+12>0 Với mọi x
b) ta có (x-3)(x-5) +20= x^2-8x+15 +20=x^2-8x+35=[x^2-2.4.2x+4^2]+19=(x-4)^2 +19 >= 0+19 >0
Bài 2:
Ta có : 3x+5 >= 2+2x
=>3x-2x>=2-5
=>x >= -3
Vậy x >= -3
\(VT=\left(x^8-x^5+\dfrac{x^2}{4}\right)+\left(\dfrac{3}{4}x^2-x+\dfrac{1}{3}\right)+\dfrac{2}{3}\)
\(VT=\left(x^4-\dfrac{x}{2}\right)^2+\dfrac{3}{4}\left(x-\dfrac{2}{3}\right)^2+\dfrac{2}{3}>0\) (đpcm)