Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) A=\(\left(x+y\right)^6+\left(x-y\right)^6=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left[binh-phuong-thieu\right]\)
\(=2\left(x^2+y^2\right)\left[binh-phuong-thieu..\right]\)=> A chia hết cho x2+y2
2) gọi dư của phép chia là ax+b
ta có f(1) = a+b =51
f(-1) = -a+b =1
=> b =26 ; a =25
Vậy dư là : 25x + 26
Lời giải:
Gọi biểu thức là A.
\(A=256.\frac{1}{8}+\frac{1}{49^2}.7^3+\frac{1}{36^2}.\frac{1}{8^2}.27\\ =32+\frac{1}{7}+\frac{1}{3072}=32\frac{3079}{21504}\)
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
4 số liên tiếp nên chia hết cho 2.3.4=24
giá trị 9x luôn có các chữ số tận cùng là 9;1 nên 2 số 9x+1 hoặc 9x+4 sẽ cố số chia hết cho 5
nên nó chia hết cho 24.5=120
gọi A là VT
Ta có : \(A=\left[\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\right]+\left[\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\right]-1\)
Áp dụng BĐT Cô-si,ta có :
\(\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)\ge\frac{1}{2}2\sqrt{\frac{x^{10}}{y^2}.\frac{y^{10}}{x^2}}=x^4y^4\Rightarrow\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)-x^4y^4\ge0\)
\(\frac{x^{16}+y^{16}}{4}\ge\frac{x^8y^8}{2}=\left(\frac{x^8y^8}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)-\frac{3}{2}\ge4\sqrt[4]{\frac{x^8y^8}{16}}-\frac{3}{2}==2x^2y^2-\frac{3}{2}\)
\(\Rightarrow\frac{1}{4}\left(x^{16}+y^{16}\right)-2x^2y^2\ge\frac{-3}{2}\)
Từ đó ta có : \(A\ge0-\frac{3}{2}-1=\frac{-5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\x^2y^2=1\end{cases}\Leftrightarrow x=y=\pm1}\)
\(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)
=> \(\left(x^6-1\right)=\left(\left(x^3\right)^2-1\right)=\left(x^3-1\right)\left(x^3+1\right)=\left(x^3-1\right)\left(x+1\right)\left(x^2-x+1\right)⋮x^2-x+1\)
Dạo này bận quá ít thời gian làm =(((
\(x^6-1\)
\(=\left(x^3\right)^2-1^2\)
\(=\left(x^3-1\right)\left(x^3+1\right)\)
\(=\left(x^3-1^3\right)\left(x^3+1^3\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)⋮\left(x^2-x+1\right)\forall x\left(đpcm\right)\)
Ta có: x50 + x49 + ... + 1 có 51 số hạng.
x16 + x15 + ... + 1 có 17 số hạn nên ta chia nhóm trên thành 3 nhóm mỗi nhóm 17 số hạn như sau.
x50 + x49 + ... + 1 = (x50 + x49 +...+x34) + (x33 + x32 +...+x17) + (x16 + x15 +...+1)
= x34(x16 + x15 +...+1) + x17(x16 + x15 +...+1) + (x16 + x15 +...+1)
= (x16 + x15 +...+1)(x34 + x17 + 1)
Tích này chia hết cho (x16 + x15 +...+1)
Nên x50 + x49 + ... + 1 chia hết cho (x16 + x15 +...+1)
Bai nay de nhung mk ko biet nha
Nho k cho minh nha
chuc cac ban hac gioi