Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước tiên sử dụng HĐT an-1=(a-1)(an-1+an-2+...+a2+a+1)
( nếu yêu cầu chứng minh ta biến đổi vế phải thành vế trái bằng cách sử dụng phép nhân đa thức)
Do đó an-1 chia hết cho a-1 (*)
Ta có A(x)= x2015+x+1=x2015-x2+x2+x+1
=x2(x2013-1)+(x2+x+1)=x2[(x3)671-1]+(x2+x+1)
Áp dụng (*) (x3)671-1 chia hết cho x3-1 nên A(x)=(x3-1).B(x)+(x2+x+1)
=(x+1)(x2+x+1).B(x)+(x2+x+1)=(x2+x+1).C(x) nên A(x) chia hết cho x2+x+1
a)(8x^9 - 8 x^8) -(x^8-1)=8x^8(x-1) - (x-1)(x^7+...+1)
=(x-1)(8x^8-x^7-x^6-...-1)
=(x-1)(x^8-x^7 + (x^8-x^6).....(x^8-1) mà (x^8-1) , (x^8-6) ,....x^8-1 lần lượt đều chia hết cho x-1. Vậy bt đã cho chia hết cho (x-1)^2
tham khảo link này nha bạn:
https://h7.net/hoi-dap/toan-8/chung-minh-x-2-x-1-10-x-2-x-1-10-2-chia-het-cho-x-1-faq288113.html
\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\\ \RightarrowĐPCM\)
\(2005^3+125=\left(2005+5\right)\left(2005^2+2005\cdot5+5^2\right)=2010\left(2005^2+2005\cdot5+5^2\right)⋮2010\)\(x^2+y^2+z^2+3=2\left(x+y+z\right)\\ \Leftrightarrow x^2+y^2+x^2+3=2x+2y+2z\\ \Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\\ \left(x-1\right)^2\ge0;\left(y-1\right)^2\ge0;\left(z-1\right)^2\ge0\\ \Rightarrow\left(x-1\right)^2=\left(y-1\right)^2=\left(z-1\right)^2=0\\ \Rightarrow x-1=y-1=z-1=0\\ \Leftrightarrow x=y=z=1\)
b) \(2005^3+125\)
\(=2005^3+5^3\)
\(=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)
\(=2010\left(2005^2-2005.5+5^2\right)\)\(⋮\) 2010
Vậy \(2005^3+125\) chia hết cho 2010