K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

10^(3n-1) hay là \(10^{3n}-1\)

12 tháng 4 2017

cai thu 2

12 tháng 8 2019

a) n+6 chia hết cho n

Mà n chia hết cho n

=> 6 chia hết cho n

=> n thuộc Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3;\(\pm\)6}

Vậy...

b) 38-3n chia hết cho n

3n chia hết cho n với mọi n

=> 38 chia hết cho n

=> n thuộc Ư(38)={\(\pm\)1;\(\pm\)2;\(\pm\)19;\(\pm\)38}

Vậy...

c) n+5 chia hết cho n+1

=> n+5 - (n +1) chia hết cho n+1

=> 6 chia hết cho n+1

=> n+1 thuộc Ư(6)={\(\pm\)1; \(\pm\)2; \(\pm\)3;\(\pm\)6}

=> n thuộc {0;-2;1;-3;2;-4;5;-7}

Vậy...

d) 28 chia hết cho n-1

=> n-1 thuộc Ư(28)={\(\pm\)1;\(\pm\)2;\(\pm\)4;\(\pm\)7;\(\pm\)14;\(\pm\)28}

=> n thuộc {2;0;3;-1;5;-3;8;-6;15;-13;29;-27}

Vậy...

12 tháng 8 2019

a) Ta có \(n+6⋮n\)

\(n⋮n\Rightarrow6⋮n\)

\(\Rightarrow n\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}.\)

c) Vì \(n+5⋮n+1\)

\(\Rightarrow\left(n+1\right)+4⋮n+1\)

\(n+1⋮n+1\Rightarrow4⋮n+1\)

\(\Rightarrow n+1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow n+1\in\left\{-4;-2;-1;1;2;4\right\}\)

\(\Rightarrow n\in\left\{-5;-3;-2;0;1;3\right\}.\)

Chúc bạn học tốt!

17 tháng 4 2017

Giả sử tồn tại n sao cho \(S=n^2 + 3n - 38\) chia chết cho \(49\).

Khi đó xét biểu thức:

\(n^2 - 4n + 4 = n^2 + 3n - 7n -38 + 42 \)

\(= n^2 + 3n - 38 - 7(n - 6)\) chia hết cho \(7\)

Biểu thức đem xét là \(n^2 - 4n + 4\) viết \(-4n \)

\(= -7n + 3n; 4 \)

\(= -38 + 42\)

\(\Rightarrow\)\( n^2 - 4n + 4 \)

\(= (n - 2)^2\) chia hết cho \(7\) hay \(n-2\) chia hết cho \( 7\)

Gọi \(n - 2 = 7t \)

\(\Rightarrow\)\( n = 2 + 7t\). Thay vào \(S\) ta có:

\(S = (2 + 7t)^2 + 3(2 + 7t) - 38 \)

\(= 4 + 28t + 49t^2 + 6 + 21t - 38 \)

\(= 49t^2 + 49t - 28 \)

\(\Rightarrow S\) không chia hết cho \(49\)

\(\RightarrowĐpcm\)

12 tháng 8 2016

Ta có : \(2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

=> \(-5n^2-5n=-5\left(n^2+n\right)\)Như vậy luôn chia hết cho 5 với mọi n

14 tháng 6 2016

\(A=\left(n^2+3n-1\right)\left(n+2\right)-n^3+2=n^3+3n^2-n+2n^2+6n-2-n^3+2=\)

\(=5n^2+5n=5n\left(n+1\right)\)

Vậy A chia hết cho 5 với mọi n.

(Thậm chí còn chia hết cho 10 vì n(n+1) luôn chia hết cho 2)

24 tháng 6 2018

n.2+n+1=n.3+1. Vì n.3 Chia hết cho 3, 1 ko chia hết cho 3 nên n.3+1 Ko chia hết cho 3 
=>n.2+n+3 ko chia hết cho 3.Ma 1 só ko chia het cho 3 thi ko chia hết cho 9 
Vậy với mọi n la số t­­­­­­­­­­ự nhiên thì n.2+n+1 ko chia hết cho 9 

9 tháng 11 2015

a) Xét n2+4n+3= n2+n+3n+3= n(n+1) + 3(n+1)= (n+1)(n+3) 
Mà n là số nguyên lẻ nên n chia cho 2 dư 1 hay n= 2k+1( k thuộc Z) 
do đó n2+4n+3= (n+1)(n+3)= (2k+1+1)(2k+1+3)= (2k+2)(2k+4) 
= 2(k+1)2(k+2)= 4(k+1)(k+2) 
Mà (k+1)(k+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2. 
Vậy n2+4n+3= (n+1)(n+3)= 4(k+1)(k+2) chia hết cho 4; chia hết cho 2

=>n2+4n+3 chia hết cho 4.2=8 ( đpcm)

6 tháng 8 2016

a) vì n lẻ nên n có dạng 2k+1 vậy n^2+4n+3=4k^2+1+8k+4+3

=4k^2+8+8k NX:8+8n chia hết cho 8 nên 4k^2 chia hết cho 8

vì 2k+1 lẻ nên k là số chẳn vậy k chia 8 dư 0;2;4;6 TH dư 0 dễ

nếu k chia 8 dư 2 thì 4k chia hết cho 8; nếu k chia 8 dư 4 thì k^2 chia hết cho 8

nếu k chia 8 dư 6 thì 4k^2 chia hết cho 8. bạn tự nhân lên sẽ rõ lí do