Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{A}{2}+\dfrac{B}{2}=\dfrac{\pi}{2}-\dfrac{C}{2}\Rightarrow tan\left(\dfrac{A}{2}+\dfrac{B}{2}\right)=tan\left(\dfrac{\pi}{2}-\dfrac{C}{2}\right)\)
\(\Rightarrow\dfrac{tan\dfrac{A}{2}+tan\dfrac{B}{2}}{1-tan\dfrac{A}{2}tan\dfrac{B}{2}}=cot\dfrac{C}{2}=\dfrac{1}{tan\dfrac{C}{2}}\)
\(\Rightarrow tan\dfrac{A}{2}.tan\dfrac{C}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}=1-tan\dfrac{A}{2}tan\dfrac{B}{2}\)
\(\Rightarrow tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}=1\)
Ta có:
\(tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\ge\sqrt{3\left(tan\dfrac{A}{2}tan\dfrac{B}{2}+tan\dfrac{B}{2}tan\dfrac{C}{2}+tan\dfrac{C}{2}tan\dfrac{A}{2}\right)}=\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(A=B=C\) hay tam giác ABC đều
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\) \(=\sqrt{3.\left(4.3+3\right)}=\sqrt{3.15}=3\sqrt{5}\)
\(\text{Dấu ''='' xảy ra }\Leftrightarrow a=b=c=1\)
Đề bài thiếu, chắc chắn phải có thêm 1 dữ kiện khác
Ví dụ, bạn cho \(a=b=c=1000\) sẽ thấy BĐT sai
1.
Gọi $L$ là giao $BM, CN$ thì $L$ là trọng tâm tam giác $ABC$.
Áp dụng công thức đường trung tuyến:
$BM^2=\frac{c^2+a^2}{2}-\frac{b^2}{4}$
$CN^2=\frac{a^2+b^2}{2}-\frac{c^2}{4}$$BL^2=\frac{4}{9}BM^2=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2$
$NL^2=\frac{1}{9}CN^2=\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$
Theo cong thức Pitago:
$BN^2=BL^2+NL^2$
$\Rightarrow \frac{c^2}{4}=\frac{2}{9}(c^2+a^2)-\frac{1}{9}b^2+\frac{1}{18}(a^2+b^2)-\frac{1}{36}c^2$
$\Rightarrow $5a^2=b^2+c^2$ hay $b^2+c^2=45$
Áp dụng công thức cos:
$a^2=b^2+c^2-2bc\cos A=b^2+c^2-\sqrt{3}bc$
$\Rightarrow 9=45-\sqrt{3}bc\Rightarrow bc=12\sqrt{3}$
$S_{ABC}=\frac{1}{2}bc\sin A=\frac{1}{2}.12\sqrt{3}.\sin 30=3\sqrt{3}$
Đáp án A.
$b=
2.
\(R_{ABC}=\frac{abc}{4S_{ABC}}=\frac{3bc}{4S}=\frac{3.12\sqrt{3}}{4.3\sqrt{3}}=3\)
Đáp án B.
\(cosA=\frac{AB^2+AC^2-BC^2}{2AB.AC}=\frac{a^2+b^2+a^2+c^2-b^2-c^2}{2AB.AC}=\frac{a^2}{AB.AC}>0\)
\(\Rightarrow A< 90^0\)
Tương tự ta có: \(cosB=\frac{b^2}{AB.BC}>0\Rightarrow B< 90^0\)
\(cosC=\frac{c^2}{AC.BC}>0\Rightarrow C< 90^0\)
\(\Rightarrow\Delta ABC\) là tam giác nhọn
Ta có : \(cos^2A+cos^2B+cos^2C=1-2.cosA.cosB.cosC\)
Đặt cos A = a ; cos B = b ; cos C = c thì : \(a^2+b^2+c^2+2abc=1\)
Dự đoán : a = b = c = 1/2 nên ta đặt
a = \(\sqrt{\dfrac{xy}{\left(y+z\right)\left(z+x\right)}}\) ; \(b=\sqrt{\dfrac{yz}{\left(x+z\right)\left(x+y\right)}};c=\sqrt{\dfrac{xz}{\left(y+z\right)\left(x+y\right)}}\) ( x ; y ; z > 0 )
Khi đó : \(\Sigma\sqrt{\dfrac{cosA.cosB}{cosC}}=\Sigma\sqrt{\dfrac{y}{x+z}}\)
Cần c/m : \(\Sigma\sqrt{\dfrac{y}{x+z}}>2\) (*)
BĐT quen thuộc ; AD BĐT AM - GM ta được : \(\sqrt{\dfrac{x+z}{y}}\le\dfrac{1}{2}\left(\dfrac{x+y+z}{y}\right)\Rightarrow\sqrt{\dfrac{y}{x+z}}\ge\dfrac{2y}{x+y+z}\)
Suy ra : \(\Sigma\sqrt{\dfrac{y}{x+z}}\ge\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
" = " ko xảy ra nên hiển nhiên (*) đúng
Hoàn tất c/m
Đặt:
\(A=\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\)
Áp dụng bất đẳng thức bunhiacopxki ta có:
\(A^2=\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)^2\le\left(1^2+1^2+1^2\right)\left(4a+1+4b+1+4c+1\right)=21\)
Hay \(A\le\sqrt{21}\left(đpcm\right)\)
Rảnh quá ủng hộ cách khác nè =))
Áp dụng Cô-si có:
\(\sqrt{4a+1}\cdot\sqrt{\dfrac{7}{3}}\le\dfrac{4a+1+\dfrac{7}{3}}{2}=2a+\dfrac{5}{3}\)
Tương tự vs 2 bđt còn lại: \(\left\{{}\begin{matrix}\sqrt{4b+1}\cdot\sqrt{\dfrac{7}{3}}\le2b+\dfrac{5}{3}\\\sqrt{4c+1}\cdot\sqrt{\dfrac{7}{3}}\le2c+\dfrac{5}{3}\end{matrix}\right.\)
Cộng 2 vế của 3 bđt trên có:
\(\sqrt{\dfrac{7}{3}}\left(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\right)\le2\left(a+b+c\right)+5=7\)
\(\Leftrightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)
Hoàn tất chứng minh
\(\sqrt{9+tan^4A}\ge\sqrt{2\sqrt{9.tan^4A}}=\sqrt{6}.tanA\) , chứng minh tương tự
\(\Rightarrow\sqrt{9+tan^4A}+\sqrt{9+tan^4B}+\sqrt{9+tan^4C}\ge\sqrt{6}\left(tanA+tanB+tanC\right)\)
lại có trong tam giác ABC:
\(A+B+C=180^0\Rightarrow A+B=180^0-C\Rightarrow tan\left(A+B\right)=tan\left(180^0-C\right)\)
\(\Rightarrow\dfrac{tanA+tanB}{1-tanA.tanB}=tan\left(180^0-C\right)=-tanC\)
\(\Rightarrow tanA+tanB=-tanC+tanA.tanB.tanC\)
\(\Rightarrow tanA+tanB+tanC=tanA.tanB.tanC\)
Do ABC là tam giác nhọn \(\Rightarrow tanA,tanB,tanC>0\)
Áp dụng BĐT Cauchy: \(tanA+tanB+tanC\ge3\sqrt[3]{tanA.tanB.tanC}\)
\(\Rightarrow\dfrac{\left(tanA+tanB+tanC\right)^3}{27}\ge tanA.tanB.tanC=tanA+tanB+tanC\)
\(\Rightarrow\left(tanA+tanB+tanC\right)^2\ge27\) \(\Rightarrow tanA+tanB+tanC\ge3\sqrt{3}\)
\(\Rightarrow\sqrt{6}\left(tanA+tanB+tanC\right)\ge\sqrt{6}.3\sqrt{3}=9\sqrt{2}\)
\(\Rightarrow\sqrt{9+tan^4A}+\sqrt{9+tan^4B}+\sqrt{9+tan^4C}\ge9\sqrt{2}\)
Dấu "=" xảy ra khi tam giác ABC đều