Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Linh ơi;Phương Anh đây bài này dễ mà học nhà thầy rùi cách giải nè:
Ta có:1/23 <1/1.2.3 ;1/33 <1/2.3.4;.....;1/n3<1/.(n-1).n.(n+1)
Suy ra Đề bài <1/1.2.3+1/2.3.4+1/3.4.5+....+1/(N-1).N.(N+1)
<1/1.2-1/2.3+1/2.3-1/3.4+...+1/N-1-1/N+1/N1/N+1
<1/2-1/n+1<1/4
Vậy........
a) \(1.2+2.3+...+n\left(n+1\right)=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)(@@)
+) Với n = 1 ta có: \(1.2=\frac{1.\left(1+1\right)\left(1+2\right)}{3}\) đúng
=> (@@) đúng với n = 1
+) G/s (@@) đúng cho đến n
+) Ta chứng minh (@@ ) đúng với n + 1
Ta có: \(1.2+2.3+...+n\left(n+1\right)+\left(n+1\right)\left(n+2\right)\)
\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}+\left(n+1\right)\left(n+2\right)\)
\(=\frac{\left(n+1\right)\left(n+2\right)\left(n+3\right)}{3}\)
=> (@@) đúng với n + 1
Vậy (@@ ) đúng với mọi số tự nhiên n khác 0
b) \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}=\frac{2^n-1}{2^n}\) (@)
Ta chứng minh (@) đúng với n là số tự nhiên khác 0 quy nạp theo n
+) Với n = 1 ta có: \(\frac{1}{2}=\frac{2^1-1}{2^1}\) đúng
=> (@) đúng với n = 1
+) G/s (@) đúng cho đến n
+) Ta cần chứng minh (@) đúng với n + 1
Ta có: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^n-1}{2^n}+\frac{1}{2^{n+1}}=\frac{2^{n+1}-2+1}{2^{n+1}}=\frac{2^{n+1}-1}{2^{n+1}}\)
=> (@) đúng với n + 1
Vậy (@) đúng với mọi số tự nhiên n khác 0.
ta có 1/23<1/1*2*3 1/33<1/2*3*4 1/43<1/3*4*5 .... 1/n3<1/(n-1)*n*(n+1)
Vậy=1/23+1/33+...+1/n3<1/1*2*3+1/2*3*4+.....1/(n-1)*n*(n+1)
Ta có 1/1*2*3 + 1/2*3*4 +...+ 1/(n-1)*n*(n+1)
=1/2*(1/1*2-1/2*3 + 1/2*3-1/3*4 +...+ 1/(n-1)*n-1/n*(n+1)
=1/2*(1/2- 1/6 + 1/6 -1/12+..........+1/(n-1)*n-1/n*(n+1)
=1/2*(1/2-1/n*(n+1))
=1/4-1/2n*(n+1)<1/4
Vì 1/2^3+1/3^3+..+1/n^3<1/4-1/2n*(n+1)<1/4
nên =>1/2^3+1/3^3+...+1/n^3<1/4
\(< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right).n}\)
\(< 2\cdot\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(< \frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{4\cdot5}-\frac{1}{5\cdot6}+...+\frac{2}{\left(n-1\right)\cdot n}\)
\(< \frac{1}{2}\cdot\left(\frac{1}{2}-\frac{2}{\left(n-1\right)\cdot n}\right)\)
\(< \frac{1}{4}-\frac{1}{\left(n-1\right)\cdot n}\)
ĐPCM
Đặt A= \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n+1\right).\left(5n+4\right)}\)
\(\Rightarrow A=3.\left(\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=3.5.\frac{1}{5}.\left(\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(\Rightarrow\)\(A< \frac{3}{5}.\frac{1}{9}\)\(\Rightarrow A< \frac{1}{15}\)(đpcm)
Ta có: \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n-1}\right)\)
\(=\frac{1}{15}-\frac{3}{5\left(5n-1\right)}\)
Vì \(\frac{1}{15}-\frac{3}{5\left(5n-1\right)}< \frac{1}{15}\) nên \(\frac{3}{9.14}+\frac{3}{19.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\left(đpcm\right)\)
Tham khảo theo link này nhé!
Chứng minh: 1/2^3 + 1/3^3 + 1/4^3 + ... + 1/n^3 < 1/4 với n thuộc N, n ≥ 2 - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
\(A< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right)\cdot n\cdot\left(n+1\right)}\)
Nhận xét: mỗi số hạng tổng có dạng
\(\frac{1}{\left(n-1\right)\cdot n\cdot\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n\left(n-1\right)}-\frac{1}{n\left(n+1\right)}\right)\)
Từ đó suy ra: \(A< \frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}\left(đpcm\right)\)
Ta có :
\(\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{n^3}