K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2018

Bao nhiêu công gõ bài xong rồi đi chơi, chơi về định gửi bài, chơi về bật máy lên gửi thì lỗi, may vãi

16 tháng 2 2018

Ta có:

\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\dfrac{a^2}{2a\left(a+b+c\right)+2a^2+bc}\)

\(\le\dfrac{1}{9}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)

\(=\dfrac{1}{9}\left(\dfrac{2a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\le\dfrac{1}{9}\left(\dfrac{2\left(a+b+c\right)}{a+b+c}+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)

\(=\dfrac{1}{9}\left(2+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)

Cần chứng minh \(\dfrac{1}{9}\left(2+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\le\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\le1\)

\(\Leftrightarrow\dfrac{bc}{bc+2a^2}+\dfrac{ca}{ca+2b^2}+\dfrac{ab}{ab+2c^2}\ge1\)

Cauchy-Schwarz: \(VT=\dfrac{bc}{bc+2a^2}+\dfrac{ca}{ca+2b^2}+\dfrac{ab}{ab+2c^2}\)

\(=\dfrac{b^2c^2}{b^2c^2+2a^2bc}+\dfrac{c^2a^2}{c^2a^2+2ab^2c}+\dfrac{a^2b^2}{a^2b^2+2abc^2}\)

\(\ge\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\) * Đúng*

Happy New Year (Lunar)

Source of Question: Câu hỏi của Hiếu Cao Huy - Toán lớp 9 | Học trực tuyến Xét pt (1): \(\Delta=b^2-4ac\) \(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\); \(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\) Xét pt (2) : \(\Delta=b^2-4ac\) \(y_1=\dfrac{-b+\sqrt{\Delta}}{2c}\) ; \(y_2=\dfrac{-b-\sqrt{\Delta}}{2c}\) Thay vào M:...
Đọc tiếp

Source of Question: Câu hỏi của Hiếu Cao Huy - Toán lớp 9 | Học trực tuyến

Xét pt (1): \(\Delta=b^2-4ac\)

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}\); \(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)

Xét pt (2) : \(\Delta=b^2-4ac\)

\(y_1=\dfrac{-b+\sqrt{\Delta}}{2c}\) ; \(y_2=\dfrac{-b-\sqrt{\Delta}}{2c}\)

Thay vào M:

\(M=\dfrac{\left(-b+\sqrt{\Delta}\right)^2}{4a^2}+\dfrac{\left(-b-\sqrt{\Delta}\right)^2}{4a^2}+\dfrac{\left(-b+\sqrt{\Delta}\right)^2}{4c^2}+\dfrac{\left(-b-\sqrt{\Delta}\right)^2}{4c^2}\)

\(=\dfrac{b^2-2b\sqrt{\Delta}+\Delta}{4a^2}+\dfrac{b^2+2b\sqrt{\Delta}+\Delta}{4a^2}+\dfrac{b^2-2b\sqrt{\Delta}+\Delta}{4c^2}+\dfrac{b^2+2b\sqrt{\Delta}+\Delta}{4c^2}\)

\(=\dfrac{2b^2+2\Delta}{4a^2}+\dfrac{2b^2+2\Delta}{4c^2}=\dfrac{b^2+\Delta}{2a^2}+\dfrac{b^2+\Delta}{2c^2}=\dfrac{b^2c^2+\Delta c^2}{2a^2c^2}+\dfrac{a^2b^2+\Delta a^2}{2a^2c^2}\)

\(=\dfrac{b^2\left(a^2+c^2\right)+\Delta\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2+\Delta\right)\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2+b^2-4ac\right)\left(a^2+c^2\right)}{2a^2c^2}\)

\(=\dfrac{\left(2b^2-4ac\right)\left(a^2+c^2\right)}{2a^2c^2}=\dfrac{\left(b^2-2ac\right)\left(a^2+c^2\right)}{a^2c^2}=\dfrac{a^2b^2-2a^3c+b^2c^2-2ac^3}{a^2c^2}\)

\(=\dfrac{a^2b^2}{a^2c^2}+\dfrac{b^2c^2}{a^2c^2}-\dfrac{2a^3c}{a^2c^2}-\dfrac{2ac^3}{a^2c^2}=\dfrac{b^2}{c^2}+\dfrac{b^2}{a^2}-\dfrac{2a}{c}-\dfrac{2c}{a}\)

\(=\left(\dfrac{b^2}{c^2}-\dfrac{2ac}{c^2}\right)+\left(\dfrac{b^2}{a^2}-\dfrac{2ac}{a^2}\right)=\dfrac{b^2-2ac}{c^2}+\dfrac{b^2-2ac}{a^2}\)

\(=\left(b^2-2ac\right)\left(\dfrac{1}{c^2}+\dfrac{1}{a^2}\right)\)

Bài tập Toán

Thanks a lots for your answering ^^!

Hiếu Cao Huy: Wait together!

2
12 tháng 7 2017

M=\(\left(x_1+x_2\right)^2-2x_1.x_2+\left(y_1+y_2\right)^2-2y_1.y_2\)

Áp dụng định lý viettel :( :v )

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\);\(\left\{{}\begin{matrix}y_1+y_2=-\dfrac{b}{c}\\y_1y_2=\dfrac{a}{c}\end{matrix}\right.\)

\(M=\dfrac{b^2}{a^2}-\dfrac{2c}{a}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}=\dfrac{b^2-4ac}{a^2}+\dfrac{b^2-4ac}{c^2}+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)

\(\ge2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge4\)

Dấu = xảy ra: \(\left\{{}\begin{matrix}a=c\\b^2=4ac\end{matrix}\right.\)\(\Leftrightarrow b^2=4a^2=4c^2\)

12 tháng 7 2017

@_@ oho đưa thẳng câu hỏi luôn đi ; nói như zầy chưa nghỉ ra câu trả lời ; chống mặt chết trước rồi

13 tháng 6 2017

Từ \(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\)\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=1\)

bài này tui làm rồi ở đây

28 tháng 4 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+c}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c\left(b+c\right)}{8a^3\left(b+c\right)b^2c}}=\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{c+a}{4ca}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2a\left(c+a\right)}{8b^3\left(c+a\right)c^2a}}=\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{a+b}{4ab}+\dfrac{1}{2a}\ge3\sqrt[3]{\dfrac{a^2b\left(a+b\right)}{8c^3\left(a+b\right)a^2b}}=\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{1}{4b}+\dfrac{1}{2b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{1}{4c}+\dfrac{1}{2c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{1}{4a}+\dfrac{1}{2a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{3}{4b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{3}{4c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{3}{4a}\ge\dfrac{3}{2c}\end{matrix}\right.\)

\(\Rightarrow VT+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow VT\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )

5 tháng 12 2018

\(abc\le1\)

\(VT=\sum\dfrac{a^4}{2abc+a^2b}\ge\dfrac{\sum^2a^2}{6+\sum a^2b}\ge\dfrac{\sum^2a^2}{6+\sqrt{\dfrac{1}{3}\sum^3a^2}}\)

Ta cần chứng minh :

\(\dfrac{\sum^2a^2}{6+\sqrt{\dfrac{1}{3}\sum^3a^2}}\ge1\)

Đặt \(\sum a^2=t\left(t\ge3\right)\)

\(\Rightarrow\dfrac{t^2}{6+\sqrt{\dfrac{1}{3}t^3}}\ge1\Leftrightarrow t\sqrt{t}\left(\sqrt{t}-\dfrac{1}{\sqrt{3}}\right)\ge6\)

Thật vậy :

\(t\sqrt{t}\left(\sqrt{t}-\dfrac{1}{\sqrt{3}}\right)\ge3\sqrt{3}\left(\sqrt{3}-\dfrac{1}{\sqrt{3}}\right)=6\left(t\ge3\right)\)

21 tháng 7 2017

Bạn này mạo danh admin nhé. Thầy sẽ khoá tài khoản này lại.

AH
Akai Haruma
Giáo viên
21 tháng 7 2017

Thầy xem lại đề đi ạ. Hai vế không đồng bậc ạ.

21 tháng 12 2017

sai đề

21 tháng 12 2017

thieu de roi

16 tháng 7 2017

Áp dụng BĐT cauchy-schwarz:

\(VT=\sum\dfrac{a^4}{b^3\left(c+2a\right)}=\sum\dfrac{\dfrac{a^4}{b^2}}{b\left(c+2a\right)}\ge\dfrac{\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\)

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)

\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Dấu = xảy ra khi a=b=c