Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=\(\left(x_1+x_2\right)^2-2x_1.x_2+\left(y_1+y_2\right)^2-2y_1.y_2\)
Áp dụng định lý viettel :( :v )
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\);\(\left\{{}\begin{matrix}y_1+y_2=-\dfrac{b}{c}\\y_1y_2=\dfrac{a}{c}\end{matrix}\right.\)
\(M=\dfrac{b^2}{a^2}-\dfrac{2c}{a}+\dfrac{b^2}{c^2}-\dfrac{2a}{c}=\dfrac{b^2-4ac}{a^2}+\dfrac{b^2-4ac}{c^2}+2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\)
\(\ge2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge4\)
Dấu = xảy ra: \(\left\{{}\begin{matrix}a=c\\b^2=4ac\end{matrix}\right.\)\(\Leftrightarrow b^2=4a^2=4c^2\)
@_@ đưa thẳng câu hỏi luôn đi ; nói như zầy chưa nghỉ ra câu trả lời ; chống mặt chết trước rồi
Từ \(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\)\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=1\)
bài này tui làm rồi ở đây
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+c}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c\left(b+c\right)}{8a^3\left(b+c\right)b^2c}}=\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{c+a}{4ca}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2a\left(c+a\right)}{8b^3\left(c+a\right)c^2a}}=\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{a+b}{4ab}+\dfrac{1}{2a}\ge3\sqrt[3]{\dfrac{a^2b\left(a+b\right)}{8c^3\left(a+b\right)a^2b}}=\dfrac{3}{2c}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{1}{4b}+\dfrac{1}{2b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{1}{4c}+\dfrac{1}{2c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{1}{4a}+\dfrac{1}{2a}\ge\dfrac{3}{2c}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{3}{4b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{3}{4c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{3}{4a}\ge\dfrac{3}{2c}\end{matrix}\right.\)
\(\Rightarrow VT+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Rightarrow VT+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Rightarrow VT\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )
\(abc\le1\)
\(VT=\sum\dfrac{a^4}{2abc+a^2b}\ge\dfrac{\sum^2a^2}{6+\sum a^2b}\ge\dfrac{\sum^2a^2}{6+\sqrt{\dfrac{1}{3}\sum^3a^2}}\)
Ta cần chứng minh :
\(\dfrac{\sum^2a^2}{6+\sqrt{\dfrac{1}{3}\sum^3a^2}}\ge1\)
Đặt \(\sum a^2=t\left(t\ge3\right)\)
\(\Rightarrow\dfrac{t^2}{6+\sqrt{\dfrac{1}{3}t^3}}\ge1\Leftrightarrow t\sqrt{t}\left(\sqrt{t}-\dfrac{1}{\sqrt{3}}\right)\ge6\)
Thật vậy :
\(t\sqrt{t}\left(\sqrt{t}-\dfrac{1}{\sqrt{3}}\right)\ge3\sqrt{3}\left(\sqrt{3}-\dfrac{1}{\sqrt{3}}\right)=6\left(t\ge3\right)\)
Áp dụng BĐT cauchy-schwarz:
\(VT=\sum\dfrac{a^4}{b^3\left(c+2a\right)}=\sum\dfrac{\dfrac{a^4}{b^2}}{b\left(c+2a\right)}\ge\dfrac{\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\)
Mà \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu = xảy ra khi a=b=c
Bao nhiêu công gõ bài xong rồi đi chơi, chơi về định gửi bài, chơi về bật máy lên gửi thì lỗi, may vãi
Ta có:
\(\dfrac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\dfrac{a^2}{2a\left(a+b+c\right)+2a^2+bc}\)
\(\le\dfrac{1}{9}\left(\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{a\left(a+b+c\right)}+\dfrac{a^2}{2a^2+bc}\right)\)
\(=\dfrac{1}{9}\left(\dfrac{2a}{a+b+c}+\dfrac{a^2}{2a^2+bc}\right)\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT\le\dfrac{1}{9}\left(\dfrac{2\left(a+b+c\right)}{a+b+c}+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)
\(=\dfrac{1}{9}\left(2+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\)
Cần chứng minh \(\dfrac{1}{9}\left(2+\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\right)\le\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{a^2}{2a^2+bc}+\dfrac{b^2}{2b^2+ac}+\dfrac{c^2}{2c^2+ab}\le1\)
\(\Leftrightarrow\dfrac{bc}{bc+2a^2}+\dfrac{ca}{ca+2b^2}+\dfrac{ab}{ab+2c^2}\ge1\)
Cauchy-Schwarz: \(VT=\dfrac{bc}{bc+2a^2}+\dfrac{ca}{ca+2b^2}+\dfrac{ab}{ab+2c^2}\)
\(=\dfrac{b^2c^2}{b^2c^2+2a^2bc}+\dfrac{c^2a^2}{c^2a^2+2ab^2c}+\dfrac{a^2b^2}{a^2b^2+2abc^2}\)
\(\ge\dfrac{\left(ab+bc+ca\right)^2}{\left(ab+bc+ca\right)^2}=1\) * Đúng*
Happy New Year (Lunar)