Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình biết làm câu a nhưng không chắc chắn lắm đâu : Mình xét các trường hợp số dư từ 1 đến 5
p:6 dư 1=>p=6k+1 (thỏa mãn)
p:6 dư 2=>p=6k+2 mà 6k+2 chia hết cho 2(loại)
p:6 dư 3=>p=6k+3
=>p chia hết cho 3
=>p=6k+3 (loại)
p:6 dư 4=>p=6k+4
=>p chia hết cho 2
=>p=6k+4 (loại)
p:6 dư 5=>p=6k+5(thỏa mãn)
Vậy các số nguyên tố lớn hơn 3 luôn có dạng 6k+1 hoặc 6k+5
a)số nguyên tố p chia cho 6 có số dư là 1;2;3;4;5
⇒⇒p có dạng 6k+1;6k+2;6k+3;6k+4;6k+5
mà (6k+2)⋮2;(6k+3)⋮3;(6k+4)⋮2(6k+2)⋮2;(6k+3)⋮3;(6k+4)⋮2
vậy các số nguyên tố lớn 3 thường có dạng 6k+1 và 6k+5
p là số nguyên tố lớn hơn 3 nên p lẻ p không có dạng :
6k + 2 , 6k + 4 , 6k ( chia hết cho 2)
Hơn nữa, p cũng không chia hết cho 3 p không có dạng:
6k + 3 ( chia hết cho 3)
Vậy p chỉ có dạng 6k+1 hoặc 6k+5
Mọi số tự nhien lớn hơn 3 khi chia hết cho 6 có 1 trong các số dư :0,1,2,3,4,5,
TH1:p chia 6 dư 0 suy ra :p=6k là hợp số(loại)
TH2:p chia 6 dư 1 suy ra p=6k+1
TH3:p chia 6 dư 2 suy ra p =6k+2 là hợp số (loại)
TH4;p chia 6 dư 3 suy ra p=6k+3 là hợp số (loại_)
TH5:p chia 6 dư 4 suy ra p=6k+4 là hợp số (loại)
TH6:p chia 6 dư 5 suy ra p=6k+5
Vậy p có dạng 6k+1 hoặc 6k+5