Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n+1\right).\left(5n+4\right)}\)
\(\Rightarrow A=3.\left(\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=3.5.\frac{1}{5}.\left(\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(\Rightarrow\)\(A< \frac{3}{5}.\frac{1}{9}\)\(\Rightarrow A< \frac{1}{15}\)(đpcm)
đpcm<=> 5/9.14+5/14.19+...+5/(5n-1)(5n+4)<1/9
<=>1/9-1/5n+4<1/9
<=>5n-5/45n+36<1/9(đúng với mọi n>=2)
Vậy ddpcm là đúng
Đặt \(A=\frac{3}{9.14}+\frac{3}{14.19}+.......+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(5A=\frac{15}{9.14}+\frac{15}{14.19}+.....+\frac{15}{\left(5n-1\right)\left(5n+4\right)}\)
\(5A=3.\left(\frac{5}{9.14}+\frac{5}{14.19}+......+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(5A=3.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+.....+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(5A=3.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(5A=\frac{1}{3}-\frac{1}{5n+4}\)
=> \(5A<\frac{1}{3}\)
=> \(A<\frac{1}{3}:5\)
hay \(A<\frac{1}{15}\) \(\left(đpcm\right)\)
Nhớ nhé bạn
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)
b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)
\(=\frac{5}{4}.\frac{4n}{12n+9}\)
\(=\frac{5n}{12n+9}\)
( sai đề )
Câu a :
Chưa nghĩ ra! Sorry nhé!!
Câu b :
Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến
Câu c :
Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến
Vào link đó mà xem, t ngại chép lại
Ta có: \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)
\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n-1}\right)\)
\(=\frac{1}{15}-\frac{3}{5\left(5n-1\right)}\)
Vì \(\frac{1}{15}-\frac{3}{5\left(5n-1\right)}< \frac{1}{15}\) nên \(\frac{3}{9.14}+\frac{3}{19.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\left(đpcm\right)\)