K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)  nếu n chia hết cho 11 thì tổng chia hết cho 11

                                                               hoặc n+1 chia hết cho 11 thì tổng cũng chia hết cho 11

Bạn xem lại đề.

25 tháng 11 2017

=>21 chia hết 49 h minh nhé

1 tháng 12 2017

Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A chia 3 dư 2

Nếu n chia 3 dư 1 => n^2 chia 3 dư 1 => A chia 3 dư 1

Nếu n chia 3 dư 2 => n^2 chia 3 dư 1 => A chia 3 dư 2

=> ĐPCM

k mk nha

1 tháng 5 2015

ta có: n2+n+1= (n+2)(n-1) +3 
ta thấy hiệu hai số: (n+2) -(n-1) =3 chia hết cho 3 
suy ra: 
( *) hoặc (n+2) và (n-1) cùng chia hết cho 3, khi đó (n+2)(n-1) chia hết cho 9 nhưng 3 không chia hết cho 9 , dó đó (n+2)(n-1) +3 không chia hết cho 9 hay n2+n+1 không chia hết cho 9 
(**) hoặc (n+2) và (n-1) cùng không chia hết cho 3, khi đó (n+2)(n-1) ko chia hết cho 3,suy ra (n+2)(n-1) +3 ko chia hết cho 3. Mà đã không chia hết cho 3 thì đương nhiên không chia hết cho 9 rồi
------Cho 1 Đ.ú.n,g nhé

17 tháng 9 2018

Xet \(n=3k\)

\(\left(3k\right)^2+3k+2\equiv2\left(mod3\right)\)

Xet \(n=3k+1\)

\(\left(3k+1\right)^2+3k+1+2\equiv4\equiv1\left(mod3\right)\)

Xet \(n=3k+2\)

\(\left(3k+2\right)^2+3k+2+2\equiv1+2+2\equiv2\left(mod3\right)\)

\(\Rightarrow n^2+n+2⋮̸3\)

\(\Rightarrow n^2+n+2⋮̸15\)

17 tháng 9 2018

Mod là sao

25 tháng 9 2019

Hướng dẫn:

+) Với n = 7k  ; k thuộc N

\(n^2+2n+3=\left(7k\right)^2+2.7k+3=7.A+3\)không chia hết cho 7

+) n= 7k +1

\(n^2+2n+3=\left(7k+1\right)^2+2.\left(7k+1\right)+3=7.A+\left(1+2+3\right)=7.B+6\)không chia hết cho 7

+) n = 7k+ 2...

+) n = 7k+3...

+) n= 7k + 4...

+) n= 7k+5...

+) n = 7k + 6 

\(n^2+2n+3=\left(7k+6\right)^2+2.\left(7k+6\right)+3=7.G+\left(6^2+2.6+3\right)=7.G+51\)không chia hết cho 7

Vậy \(n^2+2n+3\)không chia hết cho 7 vs mọi n thuộc N

14 tháng 1 2016

+\(n=5k\)

\(P=4.5k^3+6.5k^2+3.5k-17\) không chia hết cho 5

+\(n=5k+1\)

\(P=4\left(5k+1\right)^3+6\left(5k+1\right)^2+3\left(5k+1\right)-17\)

\(=4\left(125k^3+75k^2+15k+1\right)+6\left(25k^2+10k+1\right)+15k+3-17\)

\(=4.125k^3+18.25k^2+135k-4\)không chia hết cho 5

+ tương tự ...........

Mình mới chỉ có thế thôi , chưa nghĩa ra cách khác ..

 

 

13 tháng 1 2016

bạn phân thành tick rồi chứng minh