Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 14.
Áp dụng định lí hàm số Cô sin, ta có:
\(\dfrac{{{\mathop{\rm tanA}\nolimits} }}{{\tan B}} = \dfrac{{\sin A.\cos B}}{{\cos A.\sin B}} = \dfrac{{\dfrac{a}{{2R}}.\dfrac{{{c^2} + {a^2} - {b^2}}}{{2ac}}}}{{\dfrac{b}{{2R}}.\dfrac{{{c^2} + {b^2} - {a^2}}}{{2bc}}}} = \dfrac{{{c^2} + {a^2} - {b^2}}}{{{c^2} + {b^2} - {a^2}}} \)
Bài 19.
Áp dụng định lí sin và định lí Cô sin, ta có:
\( \cot A + \cot B + \cot C\\ = \dfrac{{R\left( {{b^2} + {c^2} - {a^2}} \right)}}{{abc}} + \dfrac{{R\left( {{c^2} + {a^2} - {b^2}} \right)}}{{abc}} + \dfrac{{R\left( {{a^2} + {b^2} - {c^2}} \right)}}{{abc}} = \dfrac{{R\left( {{a^2} + {b^2} + {c^2}} \right)}}{{abc}}\left( {dpcm} \right) \)
\(\dfrac{h_b}{h_a^2}+\dfrac{h_c}{h_b^2}+\dfrac{h_a}{h_c^2}=\dfrac{\dfrac{2S_{ABC}}{b}}{\dfrac{4S_{ABC}^2}{a^2}}+\dfrac{\dfrac{2S_{ABC}}{c}}{\dfrac{4S^2_{ABC}}{b^2}}+\dfrac{\dfrac{2S_{ABC}}{a}}{\dfrac{4S_{ABC}^2}{c^2}}\)
\(=\dfrac{a^2}{2bS_{ABC}}+\dfrac{b^2}{2cS_{ABC}}+\dfrac{c^2}{2aS_{ABC}}\)
\(=\dfrac{1}{2S_{ABC}}\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\)
\(\ge\dfrac{1}{2.\dfrac{a+b+c}{2}r}.\dfrac{\left(a+b+c\right)^2}{a+b+c}=\dfrac{1}{r}\)
Hình như có dấu = chứ nhỉ
Đẳng thức xảy ra khi tam giác ABC đều
so easy