Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
6 số tự nhiên bất kì khi chia cho 6 thì xảy ra 6 trường hợp về số dư (0;1;2;3;4;5), còn 1 số kia thì cũng có thể xảy ra 1 trong 6 trường hợp
Số này nếu trừ cho 1 trong 6 số kia thì chắc chắn có 1 số thỏa mãn
Bài 2
5 số tự nhiên liên tiêp này chia cho 5 cũng xảy ra 5 th về dư, chứng minh tương tự bài 1. Bạn cố gắng dùng từ hay hơn nha
1.S=(3^0+3^1+3^2)+(3^3+3^4+3^5+3^6)+...+(3^27+3^28+3^29+3^30) S=13+3^3.(3^0+3^1+3^2+3^3)+...+3^27.(3^0+3^1+3^2+3^3) =13+3^3.40+...+3^27.40 =13+(3^3+...+3^27).40 =13+(...0) =(...3)
Vậy có tận cùng la 3 va ko co so chính phương nào có tận cùng là 3 nên ....................................