K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

323232..........32=101010..10.32

=> tồn tại.....................

18 tháng 2 2016

sao 1010...10 chia hết cho 32 vậy bạn

8 tháng 6 2020

Xét 32 số có dạng 32,3232,...,3232...3232

Theo nguyên lí Diriclet tồn tại 2 số có cùng số dư khi chia cho số 31

Giả sử 2 số đó là 32...32,32...32( lần lượt có m và n cặp 32, n>m)

Khi đó hiệu 2 số đó chia hết cho 31, tức (32...32).10m( n-m cặp 32 )

Mặt khác (10m,31)=1

Từ đó suy ra số 32...32 (n-m cặp 32) chia hết cho 31

29 tháng 3 2018

Vì có 3 số lẻ nên dư khi chia cho 8 chỉ có thể là 1, 3, 5, 7.

Ta chia thành 2 nhóm:

Nhóm 1: dư 1 và dư 7

Nhóm 2: dư 3 và dư 5

Có 2 trường hợp TH1: 3 số đã cho có 2 số thuộc 1 trong 2 nhóm trên.

Khi đó tổng của 2 số đó sẽ chia hết cho 8 (Vì tổng của 1 số dư 1 và 1 số dư 7 sẽ chia hết cho 8, cũng như tổng 1 số dư 3 và 5 cũng chia hết cho 8)

TH2: 3 số đã cho không thuộc 1 trong 2 nhóm trên. Khi đó có thể chắc chắn 1 điều là có 2 số cùng số dư. Khi đó hiệu của chúng sẽ chia hết cho 8. 

25 tháng 10 2023

Xét 1995 số có dạng : 1994 ; 19941994 ; ... ; .

Nếu một trong các số trên chia hết cho 1995 thì dễ có đpcm.

Nếu các số trên đều không chia hết cho 1995 thì khi chia từng số cho 1995 khả năng sẽ chỉ có 1994 

dư là 1 ; 2 ; 3 ; ... ; 1994.

Vì có 1995 số dư mà chỉ có 1994 khả năng dư, theo nguyên lí Đi-rích-lê tồn tại ít nhất 2 số khi chia

cho 1995 có cùng số dư, hiệu của chúng chia hết cho 1995. Giả sử hai số đó là

Khi đó : = 1994...199400...0 chia hết cho 1995 (đpcm).

2 tháng 12 2023

bạn dùng chatgpt ạ?

tại vì cách giải của định lý dirichlet không như thế này.

2 tháng 12 2023

Ko phải tôi ko cần chatgpt nhưng ứng dụng này làm sai mà t xóa app chatgpt như thế

6 tháng 9 2017

Ta biết rằng số nguyên tố lớn hơn 3 thì có 1 trong 2 dạng sau: \(6k+1;6k-1\)

Xét số nguyên tố có dạng: \(6k+1\)

Nếu k chẵn thì \(6k+1\)chia cho 12 dư 1.

Nếu k lẻ thì \(6k+1\)chia cho 12 dư 7.

Xét số nguyên tố dạng \(6k-1\)

Nếu k chẵn thì \(6k-1\)chia cho 12 dư 11.

Nếu k lẻ thì \(6k-1\)chia cho 12 dư 5.

\(\Rightarrow\)Số nguyên tố khi chia cho 12 thì có các số dư như sau: \(1;2;3;5;7;11\)

Từ đây ta thấy rằng trong 7 số nguyên tố bất kỳ sẽ có ít nhất 2 số có cùng số dư khi chi cho 12. Nên hiệu hai số đó sẽ chia hết cho 12.