K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2015

Chọn bộ 13 số sau:
1,11,...111111 (13 chữ số 1)
Đem chia 13 số trên cho 12.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 111..111 (m chữ số 2) và 111.111 (n chữ số 2) m,n trong khoảng 1 đến 13
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 12 nên
[111.111 (m chữ số 2) - 111.111 (n chữ số 2)] chia hết cho 12
=>111.11100...000 (m-n chữ số 2; n chữ số 0) chia hết cho 12
hay 111.111(m-n chữ số 2).10^n chia hết cho 12
=>111.111 (m-n chữ số 2) chia hết cho 12
=> đpcm.

10 tháng 9 2023

 Xét các số \(10^{13},10^{12},10^{11},...,10^1,10^0\). Có tất cả 14 số như thế. Mà một số khi chia cho 13 chỉ có 13 số dư là \(0,1,2,...,12\) nên sẽ tồn tại 2 số \(10^i,10^j\left(0\le i< j\le13\right)\) có cùng số dư khi chia cho 13.

 \(\Rightarrow10^i-10^j⋮13\) 

 \(\Rightarrow10^i\left(10^{j-i}-1\right)⋮13\) 

 \(\Rightarrow10^{j-i}-1⋮13\)

Nếu \(j-i=1\) thì dẫn đến \(9⋮13\), vô lí. Vậy \(j-i\ge2\)

Ta thấy \(10^{j-i}-1=99...9\) (với \(j-i\) chữ số 9).

Từ đó suy ra 999...99 (\(j-i\) chữ số 9) \(⋮13\) 

hay \(9.111...11\) (\(j-i\) chữ số 1) \(⋮13\)

hay \(111...11\) (\(j-i\) chữ số 1) \(⋮13\)

hay \(222...22\) (\(i-j\) chữ số 2) \(⋮13\)

Vậy tồn tại một bội của 13 chỉ gồm toàn các chữ số 2.

 

 

10 tháng 9 2023

 Chỗ này mình sửa lại 1 chút là \(10^j-10^i⋮13\) nhé. Mặc dù cái trên về bản chất thì vẫn đúng (vì nếu \(a⋮13\) thì \(-a⋮13\)) nhưng nếu viết như trên thì đôi khi sẽ gây nhầm lẫn cho người đọc.

15 tháng 3 2020

Tham khảo: https://olm.vn/hoi-dap/detail/1839321884.html

15 tháng 3 2020

Bn vào link này : https://olm.vn/hoi-dap/detail/107117815751.html

# HOK TỐT #

24 tháng 3 2020

11111111

24 tháng 3 2020

111111111111 là đáp án ko tin bạn thứ tính đi

31 tháng 5 2018

Xét các số:

 2,22 , 222,..., 2222...222

                        14 chữ số 2

1 số  tự nhiên khi chia cho 13 sẽ có thể có các số dư là 0,1, 2, 3,..., 12 ( 13  số dư ) mà  dãy trên có 14 số nên theo nguyên lí Diricle sẽ có ít nhất 2 số có cùng số dư khi chia cho 13

 Giả sử 2 số đó là

     222...22             và            222...22

   m chữ số 2                        n chữ số 2                  ( m, n thuộc N*,   0<m<n \(\le\)20 )

=>      222...22          \(_-\)222...22        \(⋮\)13

      n chữ số 2             m chữ số 2

<=>   222...222 000....00            \(⋮\)    13

n-m chữ số 2      m chữ số 0

<=>  222..222      x    10m      \(⋮\)13

   n-m chữ số 2

       Mà ( 10m, 13 ) = 1

=> 222....2222          \(⋮\)13

n-m chữ số 2

          Vậy tồn tại 1 số tự nhiên gồm toàn chữ số 2 là bội của 13.

                      Hok tốt

27 tháng 6 2023

Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.

25 tháng 1 2015

Chọn bộ 14 số sau:
2, 22, 222, ..., 222..2222 (14 chữ số 2)
Đem chia 14 số trên cho 13.
Theo nguyên lý Diricle thì tồn tại 2 số trong 14 số trên có cùng số dư khi đem chia cho 13. Ta gọi 2 số đó là 222..22 (m chữ số 2) và 222..22 (n chữ số 2) m,n trong khoảng 1 đến 14.
Không mất tính tổng quát, giả sử m>n.
Do 2 số trên có cùng số dư khi chia 13 nên
[222..22 (m chữ số 2) - 222..22 (n chữ số 2)] chia hết cho 13
=> 222..2200...000 (m-n chữ số 2; n chữ số 0) chia hết cho 13
hay 222..22(m-n chữ số 2).10^n chia hết cho 13
=> 222..22 (m-n chữ số 2) chia hết cho 13
=> đpcm.

17 tháng 11 2021

hi

24 tháng 12 2018

Bạn gọi như sau:
a1=7
a2=77
a3=777
......
a32=77777.....7777(gồm 32 số 7)
Đem chia cho 31 ta có 32 số số dư
R1;R2:R3;R4;....:R32 nhưng chỉ nhận 31 giá trị(0;1;2;3;4;5;6;.....;30) nên sẽ có 2 số dư trùng nhau
chẳng hạn Rm=Rn (Với m>n) thì am-an chia hết cho 31 (vì đồng dư),ta lại có
777..7(gồm m chữ số 7)-77...7(gồm n chữ số 7)=777...7(gồm m-n số 7)00....0(gồm n số 0)=777...7 nhân 10^n chia hết cho 31
vi 10^n và 31 là hai số nguyên tố cùng nhau nên suy ra 777..7 chia hết cho 31 .
Vì bài này chỉ chứng minh chứ ko phải tìm số nhé :D 

20 tháng 12 2016

nk nghĩ là số 222222222222 đó

21 tháng 12 2016

đáp án là 2222222222223