K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2022

Gọi \(k=n\left(n+1\right)\left(n+2\right)\left(n+3\right);n\in N\)

`@` \(n=0\) \(\Rightarrow k=0\) là SCP

`@` \(n>0\) \(\Rightarrow k=n\left(n+3\right)\left(n+1\right)\left(n+2\right)\)

                         \(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt \(a=n^2+3n,a>0\)

\(\Rightarrow k=a\left(a+2\right)=a^2+2a\)

\(a>0\Rightarrow a^2< a^2+2a< a^2+2a+1\)

\(\Rightarrow a^2< k< \left(a+1\right)^2\)

Vì \(k\) nằm giữa 2 SCP liên tiếp

`->` `k` không phải là SCP

Vậy.......

26 tháng 8 2018

Gọi 4 số nguyên liên tiếp là n , n+1 , n+2 , n+3 

Ta có  :   \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)

\(=\left(n^2+3n+1\right)^2\)là số chính phương  (đpcm)

26 tháng 8 2018

Gọi 4 số tự nhiên liên tiếp đó là \(n;n+1;n+2;n+3\left(n\in N\right)\)

Theo  bài ra ta có \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)+1\)

\(=n.\left(n+3\right).\left(n+1\right).\left(n+2\right)+1\)

\(=\left(n^2+3n\right).\left(n^2+3n+2\right)+1\)

Đặc \(n^2+3n=a\)

Khi đó ta có \(a.\left(a+2\right)+1=a^2+2a+1=\left(a+1\right)^2=\left(n^2+3n+1\right)^2\)là số chính phương

Vậy...

3 tháng 7 2016

20 số nguyên liên tiếp có 6 số chia hết cho 3 →→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1 →→ tổng 20 số chính phương liên tiếp chia 3 dư 2

Bấm mình nha...

Khải Nhi à, bạn đếm sai rồi, thế còn dãy 20 số từ 0 đến 19 hay các dãy đại loại thế phải có 7 số mới đúng

3 tháng 7 2016

Cho tam giác ABC vẽ AH vuông góc BC taih H . Lấy D,E sao cho D ddpos xứng với H,E đối xứng vs H qua AC . Gọi giao điểm của DE vs AB và AC lần lượt là M,N 

a, C/m tam giác AMD=tam giác AMH

b, C/m AD=AE

c, C/m AH là p/giác góc MHN

 Vẽ giúp mk hình vs đc k ạ

3 tháng 7 2016

sao lại trả lời lung tung thế

3 tháng 7 2016

Tổng 20 số chính phương liên tiếp có dạng:

\(A=n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+19\right)^2.\)

\(A=20n^2+2\cdot\left(1+2+3+...+19\right)n+1^2+2^2+3^3+...+19^2.\)

\(A=20n^2+2\cdot\frac{19\cdot20}{2}n+\frac{19\cdot\left(19+1\right)\left(2\cdot19+1\right)}{6}\)

\(A=20n^2+19\cdot20\cdot n+19\cdot13\cdot10\)

Dễ thấy A chia hết cho 2 nhưng không chia hết cho 4 nên A không phải là số chính phương.

3 tháng 7 2016

20 số nguyên liên tiếp có 6 số chia hết cho 3

=> tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1

=>  tổng 20 số chính phương liên tiếp chia 3 dư 2