Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 3√2=x23=x. xx là số vô tỉ
c=x+x2c=x+x2
Giả sử cc là số hữu tỉ thì x2+x+1x2+x+1 là số hữu tỉ
Do x>1x>1, x−1x−1 là số vô tỉ nên
(x−1)(x2+x+1)(x−1)(x2+x+1) là số vô tỉ ↔x3−1↔x3−1 là số vô tỉ ↔1↔1 là số vô tỉ (vô lí)
căn 2 vô tỉ => 1+ căn 2 vô tỉ => căn của (1+ căn 2) vô tỉ........cứ như vậy là ra
Giả sử \(\sqrt{6}\) là số hữu tỉ ⇒ \(\sqrt{6}\) = \(\dfrac{m}{n}\) với \(\left\{{}\begin{matrix}m,n\in Z^+\\\left(m,n\right)=1\end{matrix}\right.\) ⇒ 6 = \(\dfrac{m^2}{n^2}\) là số nguyên ⇒ \(m^2\) ⋮ \(n^2\). Mà \(\left(m,n\right)=1\) ⇒ \(n^2\) = 1 ⇒ 6 = \(m^2\) (Vô lý)
Vậy \(\sqrt{6}\) là số vô tỉ
Giả sử \(\sqrt{6}\) là số hữu tỉ thì \(\sqrt{6}=\dfrac{a}{b}\left(a,b\in Z;b\ne0;\left(a,b\right)=1\right)\)
\(\Rightarrow6b^2=a^2\).
Khi đó \(a^2⋮b^2\Rightarrow a⋮b\). Đặt a = bk với k là số nguyên. Khi đó \(6b^2=\left(bk\right)^2\Rightarrow6=k^2\), vô lí vì 6 không là số chính phương.
Vậy ta có đpcm.
Giả sử \(2\sqrt{2}+\sqrt{3}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(2\sqrt{2}+\sqrt{3}\right)^2=x^2\\ \Leftrightarrow11+4\sqrt{6}=x^2\\ \Leftrightarrow\sqrt{6}=\dfrac{x^2-11}{4}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{x^2-11}{4}\) là số vô tỉ \(\Rightarrow\) \(x^2\) là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(2\sqrt{2}+\sqrt{3}\) là số vô tỉ
Giả sử \(\sqrt{3}-\sqrt{2}=x\left(x\in Q\right)\)
\(\Leftrightarrow\left(\sqrt{3}-\sqrt{2}\right)^2=x^2\\ \Rightarrow5-2\sqrt{6}=x^2\\ \Rightarrow\sqrt{6}=\dfrac{5-x^2}{2}\)
Vì \(\sqrt{6}\) là số vô tỉ nên \(\dfrac{5-x^2}{2}\Rightarrow\) \(x^2\)là số vô tỉ, \(\Rightarrow x\) là số vô tỉ (vô lý)
Vậy \(\sqrt{3}-\sqrt{2}\) là số vô tỉ
a. Giả sử \(\sqrt{3}\) không phải là số vô tỉ. Khi đó tồn tại các số nguyên a và b sao cho √3 = a/b với b > 0. Hai số a và b không có ước chung nào khác 1 và -1.
Ta có: (√3 )2 = (a/b )2 hay a2 = 3b2 (1)
Kết quả trên chứng tỏ a chia hết cho 3, nghĩa là ta có a = 3c với c là số nguyên.
Thay a = 3c vào (1) ta được: (3c)2 = 3b2 hay b2 = 3c2
Kết quả trên chứng tỏ b chia hết cho 3.
Hai số a và b đều chia hết cho 3, trái với giả thiết a và b không có ước chung nào khác 1 và -1.
Vậy √3 là số vô tỉ.
b. * Giả sử 5√2 là số hữu tỉ a, nghĩa là: 5√2 = a
Suy ra: √2 = a / 5 hay √2 là số hữu tỉ.
Điều này vô lí vì √2 là số vô tỉ.
Vậy 5√2 là số vô tỉ.
* Giả sử 3 + √2 là số hữu tỉ b, nghĩa là:
3 + √2 = b
Suy ra: √2 = b - 3 hay √2 là số hữu tỉ.
Điều này vô lí vì √2 là số vô tỉ.
Vậy 3 + √2 là số vô tỉ.
Giả sử \(\sqrt{3}-\sqrt{2}\) là số hữu tỉ
nên \(\sqrt{3}-\sqrt{2}=\dfrac{p}{q}\left(q\ne0\right)\)
\(\Leftrightarrow\dfrac{p^2}{q^2}=5-2\sqrt{6}\)
\(\Leftrightarrow\dfrac{p^2}{q^2}-5=-2\sqrt{6}\)(vô lý)
Vậy: \(\sqrt{3}-\sqrt{2}\) là số vô tỉ
Ta có:
\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=-\sqrt{n+1}-\sqrt{n}\)
\(\Rightarrow P=\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...+\frac{1}{\sqrt{1992}-\sqrt{1993}}\)
\(=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+...+\sqrt{1992}+\sqrt{1993}\)
\(=\sqrt{1993}-\sqrt{2}\)
Vậy P là số vô tỉ
Giả sử \(\sqrt{7}\) là số vô tỷ
\(\Rightarrow\sqrt{7}=\frac{a}{b}\left(a,b\in Z;b\ne0\right)\)
Không mất tính tổng quát giả sử (a;b)=1
\(\Rightarrow7=\frac{a^2}{b^2}\)
\(\Rightarrow a^2=7b^2\)
\(\Rightarrow a^2\)chia hết cho 7
7 là số nguyên tố
=> a chia hết cho 7
=> a2 chia hết cho 49
=> 7b2 chia hết cho 49
=> b2 chia hết cho 7
=> b chia hết cho 7
Mà \(\left(a;b\right)\ne1\)(trái giả sử)
=> Giả sử là sai
Vậy \(\sqrt{7}\)là số vô tỷ ĐPCM
Giả sử \(\sqrt{2}+\sqrt{3}\) là số hữu tỉ ⇒ \(\left(\sqrt{2}+\sqrt{3}\right)^2\) ∈ Q ⇒ 2 + 2.\(\sqrt{2}.\sqrt{3}\) + 3 ∈ Q
Mà 2 và 3 ∈ Q ⇒ 2.\(\sqrt{2}.\sqrt{3}\) ∈ Q ⇒ \(\sqrt{2}.\sqrt{3}\) ∈ Q ⇒ \(\sqrt{6}\) ∈ Q (Vô lý)