\(1^n+2^n+3^n+4^n\)  chia hết cho 5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

\(A=1^n+2^n+3^n+4^n\)

n không chia hết cho 4 thì n chỉ có thể có các số dư: 1; 2; 3 khi chia cho 4.

Ta lập bảng chữ số tận cùng

nn=4k+1n=4k+2n=4k+3
1n111
2n...2...4...8
3n...3...9...7
4n...4...6...4
A=1n+2n+3n+4n...0...0...0

A luôn có tận cùng là 0 nên A chia hết cho 10 => A chia hết cho 5 - đpcm

16 tháng 11 2019

mình thấy hơi khó

23 tháng 6 2015

Bài 1 : \(3^{n+2}\)\(-2^{n+2}\)\(3^n-2^n\)\(\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

 = \(3^n\)\(\left(3^2+1\right)\) \(-2^n\left(2^2+1\right)\)\(3^n\times10-2^{n-1}\times10\)

= 10 \(\times\left(3^n+2^{n+1}\right)\)

chia hết cho 10

Bài 2 : 

\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\) =\(75+25+75.4.\left(4^{2003}+4^{2003}+....+4^2+4\right)\)

\(100+300.\left(4^{2003}+4^{2003}+...+4^2+4\right)\)

chia het cho 100

12 tháng 4 2018

ehdhfhdfh

18 tháng 2 2017

a, Ta có : 8.2n + 1n + 1 

= 8.2n + 1 (vì 1n + 1 lúc nào cũng bằng 1)

= 23 + n . 1

Mà 23 + n luôn luôn ko chia hết cho10

Nên 8.2n + 1n + 1  ko chi hết cho10

23 tháng 6 2019

#)Giải :

Từ giả thiết ta suy ra được các tích x1.x2+x2.x3+...+xn.x1 chỉ nhận 1 trong 2 giá trị là 1 và (-1)

Mà x1.x2+x2.x3+...+xn.x1 = 0 => n = 2m

Đồng thời có m số hạng = 1, m số hạng = -1

Ta nhận thấy (x1x2)+(x2x3)...(xnx1) = x21.x22.....x2= 1 

=> Số các số hạng = -1 phải là số chẵn => m = 2k

=> n = 4k => n chia hết cho 4

3 tháng 3 2019

bạn ghi sai đề ; 4n+3+4n+2-4n-1-4n =4n( 43+42-4-1)=4n.75 =4n-1.300 ta thấy n\(\inℕ^∗\) nên 4n-1.300 \(⋮\)300 \(\Rightarrow\)..............

......................(bạn ghi câu kết nha

4 tháng 3 2019

Sai đề ?

Đề đúng là \(4^{n+3}+4^{n+2}-4^{n+1}-4^n\)

Biến đổi tương đương :
\(4^n\left(4^3+4^2-4-1\right)\) = \(4^n\cdot75=4^{n-1}\cdot4\cdot75=4^{n-1}\cdot300⋮300\)

=> ĐPCM

4 tháng 3 2019

ê