Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK bài toán là x,y,z,a,b,c đều khác 0 => x^2-yz; y^2-xz; z^2-xy đều khác 0 (vì nếu 1 trong 3 số đó bằng 0 thì từ giả thiết suy ra cả 3 số đó cùng bằng 0 => x = y = z = 0, trái với ĐK đặt ra)
Từ giả thiết => a/(x^2-yz) = b/(y^2-xz) = c/(z^2-xy) (1)
Bình phương phân thức đầu, nhân 2 phân thức sau với nhau
a^2/(x^2-yz)^2 = bc/(y^2-xz)(z^2-xy) =>
a^2/(x^2-yz)^2 = (a^2-bc)/[(x^2-yz)^2 - (y^2-xz)(z^2-xy)] = (a^2-bc)/[x (x^3 + y^3 + z^3 - 3xyz)] =>
(a^2-bc)/x = [a^2/(x^2 - yz)^2] * (x^3 + y^3 + z^3 - 3xyz) (2)
Thực hiện tương tự ta cũng có
(b^2-ac)/y = [b^2/(y^2 - xz)^2] * (x^3 + y^3 + z^3 - 3xyz) (3)
(c^2-ab)/z = [c^2/(z^2 - xy)^2] * (x^3 + y^3 + z^3 - 3xyz) (4)
Từ (1),(2),(3),(4) => (a^2-bc)/x = (b^2-ac)/y = (c^2-ab)/z.
Bạn giải ra từng bước
Rồi đi thử lại
Kết luận kết quả
~~~ Chào bạn ~~~
Ta có: a.(y + z) = b.(x + z) = c.(x + y)
\(\Rightarrow\frac{a.\left(y+z\right)}{abc}=\frac{b.\left(x+z\right)}{abc}=\frac{c.\left(x+y\right)}{abc}\)
\(\Rightarrow\frac{y+z}{bc}=\frac{x+z}{ac}=\frac{x+y}{ab}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y+z}{bc}=\frac{x+z}{ac}=\frac{x+y}{ab}=\frac{\left(x+y\right)-\left(x+z\right)}{ab-ac}=\frac{\left(y+z\right)-\left(x+y\right)}{bc-ab}=\frac{\left(x+z\right)-\left(y+z\right)}{ac-bc}\)
\(=\frac{y-z}{a.\left(b-c\right)}=\frac{z-x}{b.\left(c-a\right)}=\frac{x-y}{c.\left(a-b\right)}\left(đpcm\right)\)
\(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
\(\Leftrightarrow\dfrac{a\left(y+z\right)}{abc}=\dfrac{b\left(z+x\right)}{abc}=\dfrac{c\left(x+y\right)}{abc}\)
\(\Leftrightarrow\dfrac{\left(x+y\right)-\left(z+x\right)}{ab-ac}=\dfrac{y-z}{a\left(b-c\right)}\)
\(\Leftrightarrow\dfrac{\left(y+z\right)-\left(x+y\right)}{bc-ab}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{\left(z+x\right)-\left(y+z\right)}{ac-bc}=\dfrac{x-y}{c\left(a-b\right)}\)
\(\Rightarrow\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\left(đpcm\right)\)
a(y+z) = b(z+x) = c(x+y)
\(\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)
\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{y+z}{bc}=\frac{z+x}{ac}=\frac{x+y}{ab}=\frac{\left(x+y\right)-\left(z+x\right)}{ab-ac}=\frac{\left(y+z\right)-\left(x+y\right)}{bc-ab}=\frac{\left(z+x\right)-\left(y+z\right)}{ac-bc}\)
\(\Rightarrow\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)( đpcm )