\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4>0\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

Lời giải:

Để thuận mắt hơn ta sẽ đi CM:

\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2<0\)

Thật vậy:

\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2\)

\(=(a^4+b^4+2a^2b^2)+c^4-4a^2b^2-2b^2c^2-2c^2a^2\)

\(=(a^2+b^2)^2+c^4-4a^2b^2-2c^2(a^2+b^2)\)

\(=(a^2+b^2-c^2)^2-4a^2b^2\)

\(=(a^2+b^2-c^2-2ab)(a^2+b^2-c^2+2ab)\)

\(=[(a-b)^2-c^2][(a+b)^2-c^2]\)

\(=(a-b-c)(a-b+c)(a+b-c)(a+b+c)\)

\(=-(b+c-a)(a+c-b)(a+b-c)(a+b+c)\)

Vì $a,b,c$ là độ dài 3 cạnh tam giác nên:

\(b+c-a>0; a+c-b>0; a+b-c>0; a+b+c>0\)

\(\Rightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=-(b+c-a)(a+c-b)(a+b-c)(a+b+c)<0\)

Ta có đpcm.

28 tháng 1 2021

444448888855555695+777+6666555888852652522222222222222222256585965

28 tháng 1 2021

Đặt A=2a2b2+2c2a2+2b2c2 - a4 - b4 - c4

A= - ( a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2)

A= - (a4 + b4 + c4 - 2(ab)2 - 2(bc)2-2(ca)2 - 4(ca)2)

áp dụng hàng đẳng thức:

(a2-b2+c2)=a4+b4+c4-2(ab)2-2(bc)2+2(ca)2

A= - ( (a2-b2+c2)-4(ca)2)

A= - (a2-b2+c2-2ca) (a2-b2+c2+2ca)

CHÚC BẠN HỌC TỐT##

22 tháng 7 2015

Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2  + 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 =  (a2 + b2 - c2)2 - 4a2b2

= (a2 + b2 - c2 - 2ab).(a2 + b2  - c+ 2ab)  (1)

Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c> (|a - b|)2 = (a - b)2

=> c2 > a2 + b2 - 2ab => a2 + b - c2 - 2ab  < 0  (2)

lại có : a+ b > c => (a+ b) 2 > c=> a2 + b2  - c+ 2ab > 0  (3)

Từ (1)(2)(3) => A < 0 => đpcm

21 tháng 11 2017
dau = so 2 -4a^2b^2 moi dung nha
17 tháng 7 2016


A = 2a2b+ 2b2c+ 2a2c− a− b− c4

<=> A = 4a2c− ( a4+b+ c− 2a2b+ 2a2c− 2b2c)

<=> A = 4a2c− ( a− b+ c2)2

<=> A = ( 2ac + a− b+ c) ( 2ac − a+ b− c)

<=> A = [ (a+c)− b] ( b− (a−c)2)

<=> A = ( a+b+c) (a+c−b) (b+a−c) (b−a+c)
Mà a, b, c là 3 cạnh của tam giác nên: Mà a, b, ca, b, c là 33 cạnh của tam giác nên:\

a+b+c>0

a+c−b>0

b+a−c>0

b−a+c>

=> (a+b+c)(a+c−b)(b+a−c)(b−a+c)>0

A>0 (Dpcm)