Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://cunghoctot.vn/Forum/Topic/1002821
bạn cứ vào táp này là có lời giải
Ta có nếu a không là bội của 7 thì a không chia hết cho 7 với mọi a là số nguyên lớn hơn 0
Mà a không chia hết cho 7 tức là a chia cho 7 dư 1, 2, 3, 4, 5 hoặc 6
Vì vậy a^6 chia cho 7 sẽ dư 1^6, 2^6, 3^6, 4^6, 5^6 hoặc 6^6
Vậy nếu 1^6 - 1, 2^6 - 1, 3^6 - 1, 4^6 - 1, 5^6 - 1, 6^6 - 1 chia hết cho 7 thì a^6 - 1 chia hết cho 7
Thật vậy :
- 1^6 - 1 = 1 - 1 = 0 chia hết cho 7
- 2^6 - 1 = 64 - 1 = 63 chia hết cho 7
- 3^6 - 1 = 729 - 1 = 728 chia hết cho 7
- 4^6 - 1 = 4096 - 1 = 4095 chia hết cho 7
- 5^6 - 1 = 15625 - 1 = 15624 chia hết cho 7
- 6^6 - 1 = 46656 - 1 = 46655 chia hết cho 7
Vậy a^6 - 1 chia hết cho 7 với mọi x thuộc số nguyên lớn hơn 0 không chia hết cho 7
\(A=a^6-1=\left(a^3-1\right)\left(a^3+1\right)=\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)
Nếu a không chia hết cho 7
+ a =7k +1 =>a-1 = 7k chia hết cho 7 => A chia hết cho 7
+a = 7k +2 => a2 +a +1 = (7k +2)2 + 7k +2 +1 = 7(7k2 +3k +1) chia hết cho 7 => A chia hết cho 7
Tương tụ
+a =7k +3 => a2 -a +1 chia hết cho 7 => A chia hết chi 7
+a =7k +4
+a =7k +5
+a =7k+6
Vậy ........
Ta có : a+5b chia hết cho 7
=> 4.(a+5b) chia hết cho 5
=> 4a+20b chia hết cho 7
Mà 14a+ 21b chia hết cho 7
=> (14a+21b) - ( 4a+20b)chia hết cho 7
=> 10a+b chia hết cho 7
ta có: P(x) chia hết cho 7 với mọi x
=> Xét TH: P(0) = a.02 +b.0 + c = 0 + c => c chia hết cho 7
P(1) = a.12 + b.1 + c = a + b + c => a + b + c chia hết cho 7
mà c chia hết cho 7 (cmt)
=> a + b chia hết cho 7 (*)
P(-1) = a.(-1)2 + b.(-1) + c = a - b + c chia hết cho 7 => a - b chia hết cho 7 ( do c chia hết cho 7)
=> a + b + a - b chia hết cho 7
=> 2a chia hết cho 7
=> a chia hết cho 7 ( do 2 không chia hết cho 7)
mà a+ b chia hết cho 7
=> b chia hết cho 7
Ta có:
\(f\left(1\right)=a+b+c\text{⋮7 }\)
\(f\left(2\right)=4a+2b+c⋮7\)
\(\Rightarrow f\left(2\right)-f\left(1\right)=3a+b⋮7\)
\(f\left(3\right)=9a+3b+c=3\left(3a+b\right)+c⋮7\)
Mà \(3a+b⋮7\)
\(\Rightarrow c⋮7\)
Mà \(a+b+c⋮7\)
\(\Rightarrow a+b⋮7\)
Mà \(4a+2b+c⋮7\)
\(\Rightarrow4a+2b=2\left(2a+b\right)⋮7\)
\(2\text{̸ ⋮̸7}\)
\(\Rightarrow2a+b⋮7\)
Mà \(a+b⋮7\)
\(\Rightarrow\left(2a+b\right)-\left(a+b\right)=a⋮7\)
Có \(a⋮7;c⋮7;a+b+c⋮7\)
\(\Rightarrow b⋮7\)
\(f\left(m\right)=am^2+bm+c\)
Như vậy \(\Rightarrow am^2⋮7;bm⋮7;c⋮7\)
\(\Rightarrow a.x^2+bx+c⋮7\)
Do đó với bất kỳ giá trị nào của m nguyên thì f(m)⋮7