K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

A B C A' B' C' M M' H K

Cho tam giác ABC; A'B'C' ; đường trung tuyến AM; A'M' thỏa mãn các điều kiện như đã cho

Gọi H là điểm đối xứng với A qua M; K là điểm đối xứng với A' qua M'

+) Tam giác AMC và HMB có: MC = MB (vì M là trung điểm của BC); góc AMC = HMB (đối đỉnh); AM = HM 

=> tam giác AMC = HMB ( c - g - c)  => AC = HB 

+) Tương tự, tam giác A'M'C' = KM'B' ( c - g - c)  => A'C' = KB' 

mà AC = A'C' nên HB = KB'

+) Tam giác ABH và A'B'K có: AB = A'B'; BH = B'K; AH = A'K ( vì AH = 2.AM; A'K = 2.A'M' mà AM = A'M')

=> tam giác ABH = A'B'K ( c- c- c) => góc BAM = B'A'M'   (1)

+) Chứng minh tương tự, ta có: tam giác ACH = A'C'K ( c - c - c) => góc CAM = C'A'M'   (2)

Từ (1)(2) => góc BAM + CAM = B'A'M' + C'A'M' => góc BAC = góc B'A'C' 

+) Xét tam giác ABC và A'B'C' có: AB = A'B'; góc BAC = B'A'C'; AC= A'C'

=> Tam giác ABC = A'B'C' (c - g- c)

Vậy.....

 

6 tháng 12 2019

A B C D A' B' M M' C' D'

\(\Delta ABC\) và \(\Delta A'B'C'\) có :

\(AB=A'B';AC=A'C'\)và trung tuyến AM = Trung tuyến A'M'

ta phải chứng minh :

\(\Delta ABC=\Delta A'B'C'\)

 Trên tia AM lấy điểm D sao cho M là trung điểm của AD.

Trên tia A'M' lấy điểm D' sao cho M' là trung điểm của trung điểm A'D'.

ta thấy CD = AB ; C'D' = A'B'

\(\Delta ACD=\Delta A'C'D'\left(c.c.c\right)\)

\(\Rightarrow\widehat{A}_1=\widehat{A'}_1\)

\(\Delta AMC=\Delta A'M'C'\left(c.g.c\right)\Rightarrow CM=C'M'\Rightarrow BC=B'C'\)

\(\Delta ABC=\Delta A'B'C'\left(c.c.c\right)\)

18 tháng 8 2019

1 2 A B M C

Xét \(\Delta ABC\), đường trung tuyến AM có \(AM=\frac{1}{2}BC\). Ta sẽ chứng minh : \(\widehat{BAC}=90^0\)

Dễ thấy : MA = MB = MC

Các \(\Delta MAB,\Delta MAC\)cân tại M nên: \(\widehat{B}=\widehat{A_1},\widehat{C}=\widehat{A_2}\). Do đó :

\(\widehat{B}+\widehat{C}=\widehat{A_1}+\widehat{A_2}=\widehat{BAC}\)

9 tháng 1 2018

C A B M 1 2

GT : \(\Delta ABC\); MB = MC ; AM = \(\frac{1}{2}BC\)

KL : \(\Delta ABC\)vuông

giải

Ta có : MB = MA = MC ( gt ) .

Ta thấy \(\Delta MAB,\Delta MAC\)cân tại M

suy ra : \(\widehat{A_1}=\widehat{B}\)\(\widehat{A_2}=\widehat{C}\)

Vậy \(\widehat{A_1}+\widehat{A_2}=\widehat{B}+\widehat{C}\)hay \(\widehat{A}=\widehat{B}+\widehat{C}=\frac{180^o}{2}=90^o\)

Vậy \(\Delta ABC\)vuông