K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

bài này có lấn sang 7 hàng đẳng thức lớp 8 :))

\(m.n.\left(m^2-1-n^2+1\right)\)

\(=m.n.\left[\left(m-1\right).\left(m+1\right)-\left(n-1\right).\left(n+1\right)\right]\)

\(=m.n.\left(m-1\right).\left(m+1\right)-m.n.\left(n-1\right).\left(n+1\right)\)

vì m,m-1,m+1 và n,n-1,n+1 là tích của 3 số liên tiếp => \(m.n.\left(m-1\right).\left(m+1\right)⋮3,m.n.\left(n-1\right).\left(n+1\right)⋮3\)

=> \(m.n.\left(m-1\right).\left(m+1\right)-m.n.\left(n-1\right).\left(n+1\right)⋮3\)

hay \(m.n.\left(m^2-n^2\right)⋮3\left(đpcm\right)\)

21 tháng 11 2018

eei cho sửa cái đoạn dòng thứ 4 nha

vì m.(m+1).(m-1) và n.(n+1).(n-1)  là tích của 3 số liên tiếp 

=> m.(m+1).(m-1) chia hết cho 3

và n.(n+1).(n-1)  chia hết cho 3

=> ... như lúc này

6 tháng 4 2019

p(x) = x3 - a2x + 2016b = x(x-a)(x+a) + 2016b

* a = 3k+1: p(x) = x(x-1-3k)(x+1+3k) + 2016b
Trong 3 số x - 1; x; x + 1 tồn tại một số chia hết cho 3
. x - 1 chia hết cho 3 => x-1-3k chia hết cho 3 => p(x) chia hết cho 3
. x chia hết cho 3 => p(x) chia hết cho 3
. x + 1 chia hết cho 3 => x+1+3k chia hết cho 3 => p(x) chia hết cho 3

 * a = 3k-1: p(x) = x(x-3k+1)(x+3k-1) + 2016b
Trong 3 số x - 1; x; x + 1 tồn tại một số chia hết cho 3
. x - 1 chia hết cho 3 => x-1+3k chia hết cho 3 => p(x) chia hết cho 3
. x chia hết cho 3 => p(x) chia hết cho 3
. x + 1 chia hết cho 3 => x+1-3k chia hết cho 3 => p(x) chia hết cho 3

Vậy với mọi a; b thuộc Z; a không chia hết cho 3 thì p(x) chia hết cho 3 với mọi x thuộc Z

16 tháng 11 2017

Bài đầu đơn giản rồi , tự tính nhé <3

Bài 2

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.3^2+1\right)-\left(2^n.2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n-2^{n-1}\right)⋮10\)

Vậy.....

2 tháng 10 2018

\(\left(2^5\right)^n.\left(2^4\right)^n=\left(2^9\right)^n=2^9\)

\(=>n=1\)

\(3< 3^n< 3^5\)

\(=>3^n=\left\{3^2,3^3,3^4\right\}\)

\(=>n=2,3,4\)

16 tháng 2 2019

Đề sai thế n =  1 thì

\(\left(1-1\right)^2< 1< \left(1+1\right)^2\)

16 tháng 2 2019

Giả sử n là số chính phương 

vì: n là số nguyên >1 và \(\left(n-1\right)^2< n< \left(n+1\right)^2\)

nên: n=n^2.\(\Rightarrow n^2-n=0\Leftrightarrow n\left(n-1\right)=0\Leftrightarrow\orbr{\begin{cases}n-1=0\\n=0\end{cases}}\)

Mà: n>1 nên: n-1>0 

và n>0 (vô lí) vậy n ko là số chính phương

11 tháng 8 2018

với \(n=0\) ta thấy nó thỏa mãn điều kiện bài toán

giả sử \(n=k\) thì ta có : \(5^{n+2}+26.5^n+8^{2n+1}=5^{k+2}+26.5^k+8^{2k+1}⋮59\)

khi đó nếu \(n=k+1\) thì ta có :

\(5^{n+2}+26.5^n+8^{2n+1}=5^{k+1+2}+26.5^{k+1}+8^{2k+2+1}\)

\(=5.5^{k+2}+5.26.5^k+8^2.8^{2k+1}=5.5^{k+2}+5.26.5^k+5.8^{2k+1}+59.8^{2k+1}\)

\(=5\left(5^{k+2}+26.5^k+8^{2k+1}\right)+59.8^{2k+1}⋮59\)

\(\Rightarrow\left(đpcm\right)\)