K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2020

Câu 2

Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2

Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1

                                          =4(K^2+K+H^2+H)+2

Vì 4(K^2+K+H^2+H) chia hết cho 4

=>4(K^2+K+H^2+H)+2 ko chia hết cho 4

Mk biết làm vậy thôi nha

12 tháng 10 2018

Gọi hai số lẻ bất kì là 2a + 1 và 2b + 1 (a, b ∈ Z).

Hiệu bình phương của hai số lẻ đó bằng:

   (2a + 1)2 – (2b + 1)2

= (4a2 + 4a + 1) – (4b2 + 4b + 1)

= (4a2 + 4a) – (4b2 + 4b)

= 4a(a + 1) – 4b(b + 1)

Tích của hai số tự nhiên liên tiếp luôn chia hết cho 2

⇒ a.(a + 1) ⋮ 2 và b.(b + 1) ⋮ 2.

⇒ 4a(a + 1) ⋮ 8 và 4b(b + 1) ⋮ 8

⇒ 4a(a + 1) – 4b(b + 1) ⋮ 8.

Vậy (2a + 1)2 – (2b + 1)2 chia hết cho 8 (đpcm).

Gọi 2 số lẻ liên tiếp là:   

2k−1và   

2k+1

Xét hiệu:    

A=(2k+1)^2−(2k−1)^2

                  

=4k^2+4k+1−(4k^2−4k+1)

                  

=8k ⋮8

⇒A⋮8

hay hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8

22 tháng 7 2015

gọi số lẻ đầu tiên là 2n-1, => số lẻ tiếp theo là 2n+1 
(2n+1)^2 - (2n-1)^2=(2n+1-2n+1)(2n+1+2n-1) = 2.4n=8n chia hết cho 8

 

24 tháng 4 2017

Giải bài 3 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

17 tháng 10 2017

Gọi hai số lẻ đó là 2k+1 và 2k+3 (k\(\in\)Z)

Ta có:

(2k+3)\(^2\)- (2k+1)\(^2\)= (2k+3+2k+1)(2k+3-2k-1)

= (4k+4).2

=8.(k+1)

Vì 8\(⋮\)8 \(\Rightarrow\)8.(k+1) \(⋮\)8

\(\Leftrightarrow\) (2k+3)\(^2\)-(2k+1)\(^2\)\(⋮\)8 (đpcm)

7 tháng 8 2016

Gọi 2k+1 va 2p+1 la các số lẻ
hieu cac binh phuong cua 2 so le la`:
( 2k + 1 )^2 - ( 2p+11)^2 = ( 2k + 1+2p+1)( 2k + 1-2p-1)= ( 2k +2p+2)( 2k -2p)=4(k+p+1)(k-p)
=4(k+p+1)(k+p-2p)=4(k+p+1)(k+p)-8p(k+p...
Vì 4(k+p+1)(k+p) chia hết cho 8 và 8p(k+p+1) chia hết cho 8
Vậy ( 2k + 1 )^2 - ( 2p+11)^2 chia hết cho 8

7 tháng 8 2016

Gọi 2 số lẻ đó lần lượt là 2k+1 và 2a+1

(2k+1)2-(2a+1)2

= 4k2+4k+1-4a2-4a-1

= 4(k2+k+a2+a)

Như vậy ta đã chứng minh được nó chia hết cho 4 giờ ta chứng minh k2+k+a2+a chia hết cho 2, 

Thật vậy ta có k2+k=k(k+1) ; a2+a=a(a+1)

Do 2 số tự nhiên liên tiếp luôn chia hết cho 2 suy ra a2+a và k2+k chia hết cho 2

Suy ra a2+a+k2+k chia hết cho 2 

Như vậy bài toán được chứng minh

26 tháng 5 2016

gọi 2 số lẻ bất kì lần lượt là 2a + 1 và 2a + 3

Cần chứng minh (2a + 1)- (2a + 3)2 chia hết cho 8

có: (2a + 1)- (2a + 3)2 = 4x2 + 4x + 1 - 4x - 12x - 9  = -8x - 8 = -8 (x + 1) 

-8 (x + 1) chia hết cho 8  

=> (đpcm)

26 tháng 5 2016

Gọi 2  lẻ bất kì là a và b

Phải chứng minh a2-b2 chia hết cho 8

Do a2  và b2 là số chính phương nên chia 8 chỉ có thể dư 0;1 hoặc 4. Mà a, b lẻ nên a2  và b2  lẻ suy ra a2  và b2 chia 8 dư 1

Suy ra a2-b2 chia hết cho 8

Chứng tỏ hiệu các bình phương của 2 số lẻ bất kì thí chia hết cho 8

17 tháng 8 2018

G ọ i   h a i   s ố   l ẻ   l i ê n   t i ế p   l à   :       2 k - 1   ;   2 k + 1 k ∈ N *   T h e o   b à i   r a   t a   c ó 2 k + 1 2 - 2 k - 1 2 =   4 k 2 + 4 k + 1 - 4 k 2   + 4 k   -   1 = 4 k   +   4 k =   8 k   ⋮   8

Đáp án cần chọn là :A