K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

\(\frac{\sin^4\alpha-\cos^2\alpha+2\cos^4\alpha-\cos^6\alpha}{\cos^4\alpha-\sin^2\alpha+2\sin^4\alpha-\sin^6\alpha}=\frac{\sin^4\alpha-\cos^2\alpha\left(1-\cos^2\alpha\right)^2}{\cos^4\alpha-\sin^2\alpha\left(1-\sin^2\alpha\right)^2}\)

\(=\tan^4\alpha.\frac{1-\cos^2\alpha}{1-\sin^2\alpha}=\tan^6\alpha\)

1 tháng 7 2018

E = sin^6 + cos^6 + 3sin^2.cos^2

= (sin^2 + cos^2)(sin^4 - sin^2.cos^2 + cos^4) + 3 sin^2.cos^2

= (sin^2 + cos^2)^2 - 3sin^2.cos^2 + 3sin^2.cos^2

= 1

NV
14 tháng 10 2020

\(\frac{sin^2a-cos^2a+cos^4a}{cos^2a-sin^2a+sin^4a}=\frac{sin^2a-cos^2a\left(1-cos^2a\right)}{cos^2a-sin^2a\left(1-sin^2a\right)}=\frac{sin^2a-cos^2a.sin^2a}{cos^2a-sin^2a.cos^2a}\)

\(=\frac{sin^2a\left(1-cos^2a\right)}{cos^2a\left(1-sin^2a\right)}=\frac{sin^2a.sin^2a}{cos^2a.cos^2a}=tan^4a\)

\(sin^4a+cos^4a=\left(sin^2a+cos^2a\right)^2-sin^2a.cos^2a=1-2sin^2a.cos^2a\)

a: \(A=58\left(sin^6a+cos^6a\right)-87\left(sin^4a+cos^4a\right)\)

\(=58\left[\left(sin^2a+cos^2a\right)^3-3\cdot sin^2a\cdot cos^2a\cdot1\right]-87\left[\left(sin^2a+cos^2a\right)^2-2\cdot sin^2a\cdot cos^2a\cdot\right]\)

\(=-174sin^2a\cdot cos^2a+174\cdot sin^2a\cdot cos^2a\)

=0

b: \(=sin^2a+cos^2a+3=1+3=4\)