K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

\(\frac{n^2+n+1}{n^4+n^2+1}=\frac{n^2+n+1}{n^4+2n^2+1-n^2}=\frac{n^2+n+1}{\left(n^2+1\right)^2-n^2}\)

\(=\frac{n^2+n+1}{\left(n^2+n+1\right)\left(n^2-n+1\right)}=\frac{1}{n^2-n+1}\)

Vậy \(\frac{n^2+n+1}{n^4+n^2+1}\) không là phân số tối giản với mọi \(n\inℕ^∗\)

2 tháng 2 2019

phân tích mẫu có chứa tử , rút gọn nên ko tối giản thôi mà.

5 tháng 11 2018

Ta có :

 \(n^8+n+1=n^8-n^2+n^2+n+1\)

\(=n^2(n^6-1)+n^2+n+1\)

\(=n^2(n^2-1)(n^4+n^2+1)+n^2+n+1\)

\(=n^2(n^2-1)(n^4+2n^2+1-n^2)+n^2+n+1\)

\(=n^2(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)

Mặt khác :

\(n^7+n^2+1=n^7-n+n^2+n+1\)

\(=(n-1)(n^6-1)+n^2+n+1\)

\(=(n-1)(n^2-1)(n^2+n+1)(n^2-n+1)+n^2+n+1⋮n^2+n+1\)

Vậy chúng đều có ước chung \(n^2+n+1\)và \(n^2+n+1>1\)nên phân số đó không tối giản

Hok tốt :>

bạn phải cm ƯCLNcủa tử và mẫu là 1

24 tháng 6 2019

bạn giải hộ mình với

4 tháng 11 2018

Đặt \(A=\frac{n^3-1}{n^5+n+1}\)

\(A=\frac{n^3-1^3}{n^5-n^2+n^2+n+1}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left[n^2\left(n-1\right)+1\right]}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left(n^3-n^2+1\right)}\)

\(A=\frac{n-1}{n^3-n^2+1}\)

Dễ thấy n - 1 < n3 - 1; n3 - n2 + 1 < n5 + n + 1

Mà \(\frac{n^3-1}{n^5+n+1}=\frac{n-1}{n^3-n^2+1}\)

=> A có thể rút gọn 

=> A chưa tối giản ( đpcm )

6 tháng 2 2022

-Ta có: \(n^4+n^2+1=\left(n^4+n^3+n^2\right)+\left(-n^3-n^2-n\right)+\left(n^2+n+1\right)=n^2\left(n^2+n+1\right)-n\left(n^2+n+1\right)+\left(n^2+n+1\right)=\left(n^2+n+1\right)\left(n^2-n+1\right)\)

\(\Rightarrow\dfrac{n^2+n+1}{n^4+n^2+1}=\dfrac{n^2+n+1}{\left(n^2+n+1\right)\left(n^2-n+1\right)}=\dfrac{1}{n^2-n+1}\).

-Vậy \(\dfrac{n^2+n+1}{n^4+n^2+1}\left(n\in Nsao\right)\) không là phân số tối giản. 

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với