K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

Gọi ƯCLN của tử và mẫu là d. 

Ta có : \(2n+3⋮d\) <=> \(3\left(2n+3\right)=6n+9⋮d\)

và \(3n+5⋮d\) <=> \(2\left(3n+5\right)=6n+10⋮d\)

=> \(6n+10-\left(6n+9\right)⋮d\)<=> \(1⋮d\)

Mà d nguyên nên d=1 => P/s tối giản 

21 tháng 3 2018

Giả sử d là ƯCLN(2n+3,3n+5)\(\left(d\inℕ^∗\right)\)

Khi đó: \(\hept{\begin{cases}\left(2n+3\right)⋮d\\\left(3n+5\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}\left(6n+9\right)⋮d\\\left(6n+10\right)⋮d\end{cases}}}\)

\(\Rightarrow\left[\left(6n+10\right)-\left(6n+9\right)\right]⋮d\Rightarrow1⋮d\Rightarrow d=1\left(d\inℕ^∗\right)\)

\(\Rightarrow\frac{2n+3}{3n+5}\)là phân số tối giản (đpcm)

bài này dễ mà

n - 5 = 3 {n-5} = 3n-15

suy ra : 3n-15 : 3n-14 = -1 mà Ước của 1 phân số là 1 với -1 thế nên phân số đó là phân số tối giản

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha

3 tháng 2 2019

Gọi ƯCLN(2n+3;3n+5)=d

Ta có:

2n+3 chia hết cho d=> 3(2n+3) chia hết cho d=>6n+9 chia hết cho d

3n+5 chia hết cho d=>2(3n+5) chia hét cho d=>6n+10 chia hết cho d

=>(6n+10)-(6n+9) chia hết cho d

=> 6n+10-6n-9 chia hết cho d

=> 1 chia hết cho d

 mà d lớn nhất 

=> d=1 (ĐPCM) ( vì d=1 nên 2n+3/3n+5=1, là phân số tối giản)

3 tháng 2 2019

k cho mk nha!

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

19 tháng 2 2018

Gọi \(ƯCLN\left(2n+5;3n+7\right)\) là \(d\)

\(\Rightarrow\)\(\left(2n+5\right)⋮d\) và \(\left(3n+7\right)⋮d\)

\(\Rightarrow\)\(3\left(2n+5\right)⋮d\) và \(2\left(3n+7\right)⋮d\)

\(\Rightarrow\)\(\left(6n+15\right)⋮d\) và \(\left(6n+14\right)⋮d\)

\(\Rightarrow\)\(\left(6n+15\right)-\left(6n+14\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n+15-14\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(2n+5;3n+7\right)=\left\{1;-1\right\}\)

Vậy \(\frac{2n+5}{3n+7}\) là phân số tối giản 

19 tháng 2 2018

a        Gọi ước chung của 2n+5 và 3n+7 là n

        2n+5 ⋮ x=>6n+15⋮x 

       3n+7  ⋮ x =>6n+14 ⋮x

        =>1 chia hết x=> x thuộc ước của 1

          Vậy phân số đó tối giản

b       6n-14 chia hết x

         2n-5 chia hết x=>6n-15 chia hết x

        =>1 chia hết x=> x thuộc ước của 1

        Vậy phân số đó tối giản

6 tháng 7 2021

Gọi d là (2n+5;3n+7)

\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)

=> [6n+15 - ( 6n+14 )] \(⋮\) d 

=> 1 \(⋮\)d

=> phân số trên tối giản 

21 tháng 3 2018

Gọi d là ƯCLN (2n + 3; 3n + 5)

=> 2n + 3 chia hết cho d

3n + 5 chia hết cho d

=> 3(2n + 3) hay 6n + 9 chia hết cho d

2(3n + 5) hay 6n + 10 chia hết cho d

=> (6n + 10) - (6n + 9) chia hết cho d

=> 1 chia hết cho d

=> \(\dfrac{2n+3}{3n+5}\) là phân số tối giản (đpcm)

6 tháng 5 2021

Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))

=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)

=> \(1⋮d\Rightarrow d=1\)