Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: \(I\left(\dfrac{1}{2};-3\right)\)
Thay \(x=\dfrac{1}{2};y=-3\) vào (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\), ta được:
\(\left(1-2m\right)\cdot\dfrac{1}{2}+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-m+m-\dfrac{7}{2}=-3\)
=>\(\dfrac{1}{2}-\dfrac{7}{2}=-3\)
=>-3=-3(đúng)
vậy: I(1/2;-3) là điểm cố định mà (d): \(y=\left(1-2m\right)x+m-\dfrac{7}{2}\) luôn đi qua
b: \(\left(d\right):y=\left(2m+1\right)x+m-2\)
\(=2mx+x+m-2\)
\(=m\left(2x+1\right)+x-2\)
Điểm mà (d) luôn đi qua có tọa độ là:
\(\left\{{}\begin{matrix}2x+1=0\\y=x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}-2=-\dfrac{5}{2}\end{matrix}\right.\)
c) Giả sử đường thẳng d 1 luôn đi qua một điểm cố định ( x 1 ; y 1 ) với mọi giá trị của m.
⇒ y 1 = m x 1 + 2m - 1 với mọi m
⇔ m( x 1 + 2) - 1 - y 1 = 0 với mọi m
Vậy điểm cố định mà d 1 luôn đi qua với mọi giá trị của m là (-2; -1).
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà \(\left(d\right)\) luôn đi qua
\(\Leftrightarrow y_0=\left(1+m\right)x_0-2m+4=x_0+mx_0-2m+4\\ \Leftrightarrow m\left(x_0-2\right)+\left(x_0-y_0+4\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=2\\2-y_0+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=2\\y_0=6\end{matrix}\right.\)
Vậy \(\left(d\right)\) luôn đi qua \(A\left(2;6\right)\) cố định với mọi m
Giả sử điểm cố định mà (d) luôn đi qua có tọa độ \(M\left(x_0;y_0\right)\)
\(\Rightarrow\) Với mọi m, ta luôn có:
\(y_0=\left(2m+1\right)x_0+m-2\)
\(\Leftrightarrow m\left(2x_0+1\right)+x_0-y_0-2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x_0+1=0\\x_0-y_0-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\\y_0=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy với mọi m thì (d) luôn đi qua điểm cố định có tọa độ \(\left(-\dfrac{1}{2};-\dfrac{5}{2}\right)\)