\(\dfrac{a}{b}=\dfrac{c}{d}\)thì \(\dfrac{a^2+b^2}{c^2+d^2}=\df...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) (k khác 0)

➩a=bk

c=dk

Thay a=bk và c=dk vào \(\dfrac{a^2+b^2}{c^2+d^2}\)\(\dfrac{a.b}{c.d}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}=\dfrac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(\dfrac{a.b}{c.d}=\dfrac{b.k.b}{d.k.d}=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{a.b}{c.d}\) (đpcm)

30 tháng 10 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2.k}{d^2.k}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\left(dpcm\right)\)

12 tháng 12 2022

a: a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}=\dfrac{a}{a-b}\)

b: \(\dfrac{a}{b}=\dfrac{bk}{b}=k\)

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k=\dfrac{a}{b}\)

\(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}=\dfrac{a}{3a+b}\)

d: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2=\dfrac{ac}{bd}\)

13 tháng 7 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2}{d^2}\) (1)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

1 tháng 8 2018

tick cho bạn nhaok

3 tháng 12 2017

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=>\frac{a}{a-b}=\frac{c}{c-d} \)

5 tháng 12 2017

còn mấy con kia nữa bn.... Giúp cái...haha

1 tháng 8 2018

Đặt a/b=c/d=k

suy ra a=bk

b=dk

Từ đó ta có: a.b/c.d=bk.b/dk.d=b^2/d^2

a^2-b^2/c^2-d^2= (bk)^2-b^2/(dk)^2-d^2=b^2(k^-1)/d^2(k^2-1)=b^2/d^2

vậy a.b/c.d=a^2-b^2/c^2-d^2(=b^2.d^2)

a: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)

\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)

Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

Bài 2: 

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)

\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)

30 tháng 9 2017

Các bạn chỉ cần giúp mk câu b, c, e, f,

15 tháng 12 2017

bạn cứ đặt công thức gốc là k sau đó thay vào các câu là được thui

25 tháng 7 2018

đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a) \(\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

\(\dfrac{a-b}{a}=\dfrac{bk-b}{bk}=\dfrac{b\left(k-1\right)}{bk}=\dfrac{k-1}{k}\left(1\right)\)

\(\dfrac{c-d}{c}=\dfrac{dk-d}{dk}=\dfrac{d\left(k-1\right)}{dk}=\dfrac{k-1}{k}\left(2\right)\)

từ \(\left(1\right),\left(2\right)\Rightarrow\dfrac{a-b}{a}=\dfrac{c-d}{c}\)

b) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)

\(\dfrac{ab}{cd}=\dfrac{bk.b}{dk.d}=\dfrac{b^2.k}{d^2,k}=\dfrac{b^2}{d^2}\)(3)

\(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\)(4)

từ (3) (4) \(\Rightarrow\)......

c) \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2}{d^2}\) (5)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2}{d^2}\left(6\right)\)

từ (5) (6)\(\Rightarrow\)...............