\(\dfrac{1}{3}.\dfrac{4}{6}.\dfrac{7}{9}.\dfrac{10}{12}...\dfrac{208}{210}< \dfrac{1}{25...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

Có:

\(\dfrac{n}{n+2}< \dfrac{n-1}{n}\)(Vì
\(n^2< n^2+n-2\forall n>2\))

Nên ta có

\(F=\dfrac{1}{3}.\dfrac{4}{6}....\dfrac{208}{201}\)

\(\Rightarrow F< \dfrac{1}{3}.\dfrac{3}{4}.\dfrac{6}{7}...\dfrac{207}{208}\)

\(\Rightarrow F^2< \dfrac{1.4.7...208}{3.6.9.12...210}.\dfrac{1.3.6.9...207}{3.4.7.10.208}\)

\(\Rightarrow F^2=\dfrac{1}{210}.\dfrac{1}{3}\)

\(\Rightarrow F^2=\dfrac{1}{630}< \left(\dfrac{1}{25}\right)^2\)

Vậy F\(< \dfrac{1}{25}\)

19 tháng 6 2018

Giải:

1) \(\dfrac{-1}{12}-\left(2\dfrac{5}{8}-\dfrac{1}{3}\right)\)

\(=\dfrac{-1}{12}-\left(\dfrac{21}{8}-\dfrac{1}{3}\right)\)

\(=\dfrac{-1}{12}-\dfrac{55}{24}\)

\(=\dfrac{-19}{8}\)

2) \(-1,75-\left(\dfrac{-1}{9}-2\dfrac{1}{18}\right)\)

\(=-\dfrac{7}{4}+\dfrac{1}{9}+2\dfrac{1}{18}\)

\(=-\dfrac{7}{4}+\dfrac{1}{9}+\dfrac{37}{18}\)

\(=\dfrac{5}{12}\)

3) \(-\dfrac{5}{6}-\left(-\dfrac{3}{8}+\dfrac{1}{10}\right)\)

\(=-\dfrac{5}{6}+\dfrac{3}{8}-\dfrac{1}{10}\)

\(=-\dfrac{67}{120}\)

4) \(\dfrac{2}{5}+\left(-\dfrac{4}{3}\right)+\left(-\dfrac{1}{2}\right)\)

\(=\dfrac{2}{5}-\dfrac{4}{3}-\dfrac{1}{2}\)

\(=-\dfrac{43}{30}\)

5) \(\dfrac{3}{12}-\left(\dfrac{6}{15}-\dfrac{3}{10}\right)\)

\(=\dfrac{3}{12}-\dfrac{6}{15}+\dfrac{3}{10}\)

\(=\dfrac{3}{20}\)

6) \(\left(8\dfrac{5}{11}+3\dfrac{5}{8}\right)-3\dfrac{5}{11}\)

\(=8\dfrac{5}{11}+3\dfrac{5}{8}-3\dfrac{5}{11}\)

\(=8+\dfrac{5}{11}+3+\dfrac{5}{8}-3-\dfrac{5}{11}\)

\(=8+\dfrac{5}{8}\)

\(=\dfrac{69}{8}\)

7) \(-\dfrac{1}{4}.13\dfrac{9}{11}-0,25.6\dfrac{2}{11}\)

\(=-\dfrac{1}{4}.13\dfrac{9}{11}-\dfrac{1}{4}.6\dfrac{2}{11}\)

\(=-\dfrac{1}{4}\left(13\dfrac{9}{11}+6\dfrac{2}{11}\right)\)

\(=-\dfrac{1}{4}\left(13+\dfrac{9}{11}+6+\dfrac{2}{11}\right)\)

\(=-\dfrac{1}{4}\left(13+6+1\right)\)

\(=-\dfrac{1}{4}.20=-5\)

8) \(\dfrac{4}{9}:\left(-\dfrac{1}{7}\right)+6\dfrac{5}{9}:\left(-\dfrac{1}{7}\right)\)

\(=\dfrac{4}{9}\left(-7\right)+6\dfrac{5}{9}\left(-7\right)\)

\(=-7\left(\dfrac{4}{9}+6\dfrac{5}{9}\right)\)

\(=-7\left(\dfrac{4}{9}+6+\dfrac{5}{9}\right)\)

\(=-7\left(6+1\right)\)

\(=-7.7=-49\)

Vậy ...

b: Đặt \(x^2-6x-2=a\)

Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)

=>(a+2)(a+7)=0

\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)

=>x(x-6)(x-1)(x-5)=0

hay \(x\in\left\{0;1;6;5\right\}\)

c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)

\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)

\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)

\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)

=>26x=-3

hay x=-3/26

16 tháng 1 2019

a)\(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)

\(\Leftrightarrow\dfrac{12x-10x-4}{12}=\dfrac{21-9x}{12}\)

\(\Leftrightarrow2x-4=21-9x\)

\(\Leftrightarrow2x-4-21+9x=0\)

\(\Leftrightarrow11x-25=0\)

\(\Leftrightarrow x=\dfrac{25}{11}\)

b)\(\dfrac{10x+3}{12}=1+\dfrac{6+8x}{9}\)

\(\Leftrightarrow\dfrac{30x+9}{36}=\dfrac{36+24+32x}{36}\)

\(\Leftrightarrow30x+9=60+32x\)

\(\Leftrightarrow30x+9-60-32x=0\)

\(\Leftrightarrow-2x-51=0\)

\(\Leftrightarrow x=-\dfrac{51}{2}\)

c)\(\dfrac{x}{3}-\dfrac{2x+1}{2}=\dfrac{x}{6}-6\)

\(\Leftrightarrow\dfrac{2x-6x-3}{6}=\dfrac{x-36}{6}\)

\(\Leftrightarrow-4x-3=x-36\)

\(\Leftrightarrow-4x-3-x+36=0\)

\(\Leftrightarrow-5x+33=0\)

\(\Leftrightarrow x=\dfrac{33}{5}\)

d)\(\dfrac{2+x}{3}-\dfrac{1}{2}x=\dfrac{1-2x}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{8+4x-6x}{12}=\dfrac{3-6x+3}{12}\)

\(\Leftrightarrow8-2x=6-6x\)

\(\Leftrightarrow8-2x-6+6x=0\)

\(\Leftrightarrow4x+2=0\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

Tính lại xem đúng không nha haha

16 tháng 1 2019

a) \(x-\dfrac{5x+2}{6}=\dfrac{7-3x}{4}\)

\(\Leftrightarrow\dfrac{24x}{24}-\dfrac{4\left(5x+2\right)}{24}=\dfrac{6\left(7-3x\right)}{24}\)

\(\Leftrightarrow24x-4\left(5x+2\right)=6\left(7-3x\right)\)

\(\Leftrightarrow24x-20x-8=42-18x\)

\(\Leftrightarrow4x-8=42-18x\)

\(\Leftrightarrow4x+18x=42+8\)

\(\Leftrightarrow22x=50\)

\(\Leftrightarrow x=\dfrac{25}{11}\)

Vậy S\(=\left\{\dfrac{25}{11}\right\}\)

6 tháng 6 2019

a,\(x-\frac{5x+2}{6}=\frac{7-3x}{4}\)

=> \(\frac{12x}{12}-\frac{\left(5x+2\right)2}{12}=\frac{\left(7-3x\right)3}{12}\)

=>\(\frac{12x-10x-4}{12}=\frac{21-9x}{12}\)

=>(khử mẫu)

=>\(12x-10x-4=21-9x\)

=>11x=25

=>x=25/11

b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)

=>30x+9=36+32x+24

=>32x+60=30x+9

=>2x=-51

=>x=-51/2

c: \(\Leftrightarrow2x-3\left(2x+1\right)=x+6x\)

=>7x=2x-6x-3

=>7x=-4x-3

=>11x=-3

=>x=-3/11

d: \(\Leftrightarrow4\left(x+2\right)-6x=3\left(1-2x+1\right)\)

=>4x+8-6x=3(-2x+2)

=>-2x+8+6x-6=0

=>4x+2=0

=>x=-1/2

29 tháng 5 2020

5) 3x - 1 < 8

⇔ 3x < 9

⇔ x < 3

29 tháng 5 2020

4) -8x > 24

<=> x > 32

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)

24: 

\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)

\(\Leftrightarrow\left(x+2\right)\left(x+6\right)=8\left(x+6\right)-8\left(x+2\right)\)

\(\Leftrightarrow x^2+8x+12=8x+48-8x-16=32\)

=>(x+10)(x-2)=0

=>x=-10 hoặc x=2

25: \(\Leftrightarrow\dfrac{\left(x+1\right)^2+1}{x+1}+\dfrac{\left(x+4\right)^2+4}{x+4}=\dfrac{\left(x+2\right)^2+2}{x+2}+\dfrac{\left(x+3\right)^2+3}{x+3}\)

\(\Leftrightarrow x+1+\dfrac{1}{x+1}+x+4+\dfrac{4}{x+4}=x+2+\dfrac{2}{x+2}+x+3+\dfrac{3}{x+3}\)

\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{4}{x+4}=\dfrac{2}{x+2}+\dfrac{3}{x+3}\)

\(\Leftrightarrow x+5=0\)

hay x=-5