\(\dfrac{ }{abcabc}\) chia hết cho 7, 11, 13

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2023

Ta có: \(\overline{abcabc}=\overline{abc}\times1001\)

Mà: \(1001=7\times11\times13\)

\(\Rightarrow\overline{abcabc}=\overline{abc}\times7\times13\times11\) ⋮ 7, 13, 11 (đpcm) 

3 tháng 1 2017

Ta có: \(\overline{abcabc}=\overline{abc000}+\overline{abc}\)

\(=\overline{abc}\times1000+\overline{abc}\)

\(=\overline{abc}\left(1000+1\right)=\overline{abc}.1001\)

\(=\overline{abc}.7.11.13\)

Vậy số \(\overline{abcabc}\) là tích của \(\overline{abc}\) với 7; 11; 13

=> \(\overline{abcabc}\) chia hết cho 7; 11; 13

3 tháng 1 2017

Ta có : \(\overline{abcabc}\) = \(\overline{abc000}\) + \(\overline{abc}\)

= \(\overline{abc}\) x 1000 + \(\overline{abc}\)

= \(\overline{abc}\) x (1000 + 1)

= \(\overline{abc}\) x 1001

\(\Leftrightarrow\) \(\overline{abc}\) x 7 x 11 x 13

\(\Rightarrow\) \(\overline{abcabc}\) \(⋮\) 7; 11; 13

6 tháng 10 2016

2) Gọi 5 số tự nhiên liên tiếp là : a;a+1;a+2;a+3;a+4 

Tổng bằng : a+a+1+a+2+a+3+a+4=5a+10 Vậy số này chia chỉ chia hết cho 5 

Đề bài bị sai : 

b) Gọi 5 số lẻ liên tiếp là : 2k+1;2k+3;2k+5;2k+7;2k+9 

Tổng là : 2k+1+2k+3+2k+5+2k+7+2k+9=10k +25 =10k+20+5 =10(k+2)+5 

10(k+2) chia hết cho 10 ; suy ra 10(k+2)+5 chia 10 dư 5 

3) a) abcabc=abc.1000+abc=abc.1001 

Mà 1001=7.11.13 

Đấy thế là xong 

b) abcdeg = 

11 tháng 8 2016

bạn phân tích ra nha

tíc nha mình đang bị âm điểm

18 tháng 4 2017

giúp mình với mai thi rùikhocroi

23 tháng 6 2019

a) \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)

\(=100100a+10010b+1001c\)

\(=1001\cdot\overline{abc}\)

\(=\overline{abc}\cdot7\cdot11\cdot13\)chia hết cho 11, 13

Đêm rồi không biết c/m chia hết cho 3 :)

b) \(\overline{aaa}=111\cdot a\)chia hết cho a

c) \(\overline{abc}=\overline{abc}\)nên \(\overline{abc}⋮\overline{abc}\)??? :)

23 tháng 6 2019

sửa đề

\(a,\overline{abcabc}⋮7;11;13\)

=\(\overline{abc}.1000+\overline{abc}\)

=\(\overline{abc}\left(1000+1\right)\)

= \(\overline{abc}.1001\)

= \(\overline{abc}.7..11.13\)

=> \(\overline{abcabc}⋮7;11;13\)

\(b,\overline{aaa}:a=111\)

\(=>\overline{aaa}⋮a\)

\(c,\overline{abc}⋮\overline{abc}\)

Do \(\overline{abc}=\overline{abc}\)

=> \(\overline{abc}⋮\overline{abc}\)

18 tháng 5 2017

Ta có : \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.11.91⋮11\)

\(\Rightarrow\overline{abcabc}⋮11\)

18 tháng 5 2017

Ta có \(\overline{abcabc}=\overline{abc}.1001\)

\(=\overline{abc}.11.91⋮11\)

\(=>\overline{abcabc}⋮11\left(dpcm\right)\)

2 tháng 10 2016

abcabc=100100

2 tháng 10 2016

Ta có: abcabc = 1000abc + abc = 1001.abc 

Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố) 

=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13

30 tháng 9 2018

aaaa = 1111

Câu dưới không biết

K mk nha

*Mio*

30 tháng 9 2018

a , \(aaaa=a.1111\)

Mà \(1111⋮11\)

\(\Rightarrow aaaa⋮11\)

b, +, \(ababab=ab.10101\)

Mà \(10101⋮3\)

\(\Rightarrow ababab⋮3\)

+, \(ababab=ab.10101\)

Mà \(10101⋮7\)

\(\Rightarrow ababab⋮7\)

+, \(ababab=ab.10101\)

Mà \(10101⋮13\)

\(\Rightarrow ababab⋮13\)