\(x^2-2x+2\)vô nghiệm.

Giúp nhanh nhanh ạ

E sắp phải đi học...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2018

có f(x)=x^2-2x+2

=(x^2+0,5x)+(0,5x+0,25)+0,75

=x(x+0,5)+0,5(x+0,5)+0,75

=(x+0,5)^2+0,75

có (x+0,5)^2>=0

=>(x+0,5)^2+0,75>=0,75>0

Vậy đa thức đó vô ngiệm

22 tháng 4 2018

Tks anh ạ^^

31 tháng 3 2019

Chứng minh đa thức  P(x) = 2(x-3)^2 + 5    không có nghiệm nha mấy chế
Tui viết sai đề :v

31 tháng 3 2019

a) Ta có no của đa thức f(x) = 0

                        \(\Leftrightarrow\frac{3}{2}x-\frac{1}{4}=0\)

                        \(\Leftrightarrow\frac{3}{2}x=\frac{1}{4}\)

                       \(\Leftrightarrow x=\frac{1}{6}\)

Vậy no của đa thức f(x)=0 \(\Leftrightarrow x=\frac{1}{6}\)

b) Ta có no của đa thức g(x) = 0

                  \(\Leftrightarrow2x^2-x=0\)

                  \(\Leftrightarrow x.\left(2x-1\right)=0\)

               \(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)

Vậy no của đa thức g(x) = 0 \(\Leftrightarrow x\in\left\{0;\frac{1}{2}\right\}\)

                   

                         

12 tháng 5 2017

a)f(x)=\(3x^{6^{ }}+2x^4+3x^2+1\)

12 tháng 5 2017

bài này dễ quớ =.="

12 tháng 5 2019

+) Ta có: P(x) = 7x3 + 3x4 - x2 + 5x2 - 6x3 - 2x4 + 2014 - x3

P(x) = (7x3 - 6x3 - x3) + (3x4 - 2x4) - (x2 - 5x2) + 2014

P(x) = x4 + 4x2 + 2014

Sắp xếp : P(x) = x4 + 4x2 + 2014

+) Ta có: x4 \(\ge\)0;     4x2 \(\ge\)0  ;  2014 > 0

=> x4 + 4x2 + 2014 > 0

=> P(x) vô nghiệm

12 tháng 5 2019

\(P\left(x\right)=7x^3+3x^4-x^2+5x^2-6x^3-2x^4+2014-x^3\)

\(=\left(7x^3-6x^3-x^3\right)+\left(3x^4-2x^4\right)+\left(-x^2+5x^2\right)+2014\)

\(=x^4+4x^2+2014\)

Sắp xếp P(x) = x4 + 4x2 + 2014

Ta có: \(x^4\ge0\forall x\)

\(x^4+4x^2\ge0\forall x\)

2014 > 0

=> P(x) vô nghiệm

27 tháng 3 2018

ai đó làm giúp mik

cảm ơnhiu

11 tháng 4 2018

dễ thé mà ko biet lam

19 tháng 3 2018

Ta có:

\(P\left(x\right)=2x^2+2x+\frac{5}{4}\)

Mà \(2x^2\ge0\)

Hơn nữa: \(2x^2\ge2x\)

Suy ra: \(2x^2+2x\ge0\)

Suy ra: \(P\left(x\right)\ge\frac{5}{4}\)

Vậy đa thức vô nghiệm

a) Đặt F(x)=0

\(3x^2-6x+3x^3=0\)

\(\Leftrightarrow3x^3+3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)

mà 3>0

nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)

Vậy: Sf(x)={0;-2;1}(1)

c) Thay x=0 vào đa thức g(x), ta được:

\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)

\(=-9+0+0+0=-9\)

mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)

Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)

8 tháng 10 2015

a) P(x) - Q(x) = \(3x^2+x-2-2x^2-x+3=x^2+1\)

b) \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2+1\)  = 0 

Vì \(x^2\ge0\Leftrightarrow x^2+1>0\)

=> \(H\left(x\right)=0\) vô nghiệm 

P(x)= a + x +x22 + x33 + x44 + ... + x20182018 + x\(^{2019}\)

=>P(-1)=a+(-1)+(-1)^2+(-1)^3+(-1)^4+...+(-1)^2019

=a-1+1-1+1-.....-1

=a-(1-1)-(1-1)-...-(1-1)-1

=a-1=0

=>a=0

Vậy .............................=.=