Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh đa thức P(x) = 2(x-3)^2 + 5 không có nghiệm nha mấy chế
Tui viết sai đề :v
a) Ta có no của đa thức f(x) = 0
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{3}{2}x=\frac{1}{4}\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy no của đa thức f(x)=0 \(\Leftrightarrow x=\frac{1}{6}\)
b) Ta có no của đa thức g(x) = 0
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x.\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy no của đa thức g(x) = 0 \(\Leftrightarrow x\in\left\{0;\frac{1}{2}\right\}\)
+) Ta có: P(x) = 7x3 + 3x4 - x2 + 5x2 - 6x3 - 2x4 + 2014 - x3
P(x) = (7x3 - 6x3 - x3) + (3x4 - 2x4) - (x2 - 5x2) + 2014
P(x) = x4 + 4x2 + 2014
Sắp xếp : P(x) = x4 + 4x2 + 2014
+) Ta có: x4 \(\ge\)0; 4x2 \(\ge\)0 ; 2014 > 0
=> x4 + 4x2 + 2014 > 0
=> P(x) vô nghiệm
\(P\left(x\right)=7x^3+3x^4-x^2+5x^2-6x^3-2x^4+2014-x^3\)
\(=\left(7x^3-6x^3-x^3\right)+\left(3x^4-2x^4\right)+\left(-x^2+5x^2\right)+2014\)
\(=x^4+4x^2+2014\)
Sắp xếp P(x) = x4 + 4x2 + 2014
Ta có: \(x^4\ge0\forall x\)
\(x^4+4x^2\ge0\forall x\)
2014 > 0
=> P(x) vô nghiệm
Ta có:
\(P\left(x\right)=2x^2+2x+\frac{5}{4}\)
Mà \(2x^2\ge0\)
Hơn nữa: \(2x^2\ge2x\)
Suy ra: \(2x^2+2x\ge0\)
Suy ra: \(P\left(x\right)\ge\frac{5}{4}\)
Vậy đa thức vô nghiệm
a) Đặt F(x)=0
⇔\(3x^2-6x+3x^3=0\)
\(\Leftrightarrow3x^3+3x^2-6x=0\)
\(\Leftrightarrow3x\left(x^2+x-2\right)=0\)
\(\Leftrightarrow3x\left(x^2+2x-x-2\right)=0\)
mà 3>0
nên \(x\left[x\left(x+2\right)-\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=1\end{matrix}\right.\)
Vậy: Sf(x)={0;-2;1}(1)
c) Thay x=0 vào đa thức g(x), ta được:
\(g\left(0\right)=-9+7\cdot0^4+2\cdot0^2+2\cdot0^3\)
\(=-9+0+0+0=-9\)
mà -9<0 nên x=0 không là nghiệm của đa thức g(x)(2)
Từ (1) và (2) suy ra x=0 là nghiệm của đa thức f(x) nhưng không là nghiệm của đa thức g(x)
a) P(x) - Q(x) = \(3x^2+x-2-2x^2-x+3=x^2+1\)
b) \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2+1\) = 0
Vì \(x^2\ge0\Leftrightarrow x^2+1>0\)
=> \(H\left(x\right)=0\) vô nghiệm
P(x)= a + x +x22 + x33 + x44 + ... + x20182018 + x\(^{2019}\)
=>P(-1)=a+(-1)+(-1)^2+(-1)^3+(-1)^4+...+(-1)^2019
=a-1+1-1+1-.....-1
=a-(1-1)-(1-1)-...-(1-1)-1
=a-1=0
=>a=0
Vậy .............................=.=
có f(x)=x^2-2x+2
=(x^2+0,5x)+(0,5x+0,25)+0,75
=x(x+0,5)+0,5(x+0,5)+0,75
=(x+0,5)^2+0,75
có (x+0,5)^2>=0
=>(x+0,5)^2+0,75>=0,75>0
Vậy đa thức đó vô ngiệm
Tks anh ạ^^