K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2018

Giải:

\(\left(2x-3\right)\left(4x+1\right)-4\left(x-1\right)\left(2x-1\right)-2x+5\)

\(=8x^2-12x +2x-3-\left(4x-4\right)\left(2x-1\right)-2x+5\)

\(=8x^2-12x+2x-3-\left(8x^2-8x-4x+4\right)-2x+5\)

\(=8x^2-12x+2x-3-8x^2+8x+4x-4-2x+5\)

\(=-3-4+5\)

\(=-2\)

Vậy ...

6 tháng 6 2016

a/ \(=8x^3+2x^2-8x^3-8x^2-8x^3-2x+3=-8x^3-6x^2-2x+3\)

b/ \(=3x^2+12x-7x+20+2x^3-3x^2-2x^3-5x=20\)

Biểu thức A phụ thuộc vào x còn B thì không.

25 tháng 9 2020

A = (x + 2)3 - (x - 2)3 - 6x(2x + 1)

   = x3 + 6x2 + 12x + 8 - (x3 - 6x2 + 12x - 8) - 12x2 - 6x

  = x3 + 6x2 + 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 - 6x

  = (x3 - x3) + (6x2 + 6x2 - 12x2) + (12x - 12x - 6x) + (8 + 8)

= -6x + 16

=> có phụ thuộc vào biến x

B = 8(x - 1)(x2 + x + 1) - (2x - 1)(4x2 + 2x + 1)

   = 8(x3 - 1) - (8x3 - 1) (sử dụng hằng đẳng thức thứ 6)

    = 8x3 - 8 - 8x3 + 1 = (8x3 - 8x3) + (-8 + 1) = -7

=> không phụ thuộc vào biến x

25 tháng 9 2020

\(A=\left(x+2\right)^3-\left(x-2\right)^3-6x\left(2x+1\right)\)

\(=x^3+6x^2+12x+8-x^3+6x^2-12x+8-12x^2-6x\)

\(=-6x+16\)

Vậy biểu thức A phụ thuộc vào biến x

\(B=8\left(x-1\right)\left(x^2+x+1\right)-\left(2x-1\right)\left(4x^2+2x+1\right)\)

\(=8x^3-8-8x^3+1\)

\(-7\)

Vậy biểu thức B không phụ thuộc vào biến x

11 tháng 8 2016

\(\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=\left[x.\left(2x^2-3x+4\right)+2.\left(2x^2-3x+4\right)\right]-\left[x.\left(2x+1\right)-1.\left(2x+1\right)\right]\)

\(=\left(2x^3-3x^2+4x+4x^2-6x+8\right)-\left(2x^3+x-2x-1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x+2x+1\)

\(=9\)

11 tháng 8 2016

mơn

`@` `\text {Ans}`

`\downarrow`

`A = (x - 5)( 2x + 3) - 2x(x - 3) + x + 7`

`= x(2x + 3) - 5(2x + 3) - 2x^2 + 6x + x + 7`

`= 2x^2 + 3x - 10x - 15 - 2x^2 + 7x + 7`

`= (2x^2 - 2x^2) + (3x - 10x + 7x) + (-15 + 7)`

`= 0 + 0 - 8`

`=-8`

Vậy, giá trị của biểu thức trên không phụ thuộc vào giá trị của biến.

`@` `\text {Kaizuu lv uuu}`

=2x^2+3x-10x-15-2x^2+6x+x+7

=-8

Ta có: \(B=\left(2x-y\right)^3-2\left(4x^3+1\right)+6xy+y^3\)

\(=8x^3-12x^2y+6xy-y^3-8x^3-2+6xy+y^3\)

\(=12xy-2\)

25 tháng 5 2022

\(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3x^2-3x\\ =\left(x^3-3x^2+3x-1\right)-\left(x^3+8\right)+3x^2-3x\\ =x^3-3x^2+3x-1-x^3-8+3x^2-3x\\ =-9\)

Vậy biểu thức không phụ thuộc vào giá trị của biến

2 tháng 9 2018

a)

( 3x - 5 ) ( 2x + 11 ) - ( 2x + 3 ) ( 3x + 7 )

= ( 6x^2 + 33x - 10x - 55 ) - ( 6x^2 + 14x + 9x + 21 )

= ( 6x^2 + 23x - 55 ) - ( 6x^2 + 23x + 21 )

= 6x^2 + 23x - 55 - 6x^2 - 23x - 21

= ( 6x^2 - 6x^2 ) + ( 23x - 23x ) - ( 55 + 21 )

= -76

=> với mọi x thì giá trị của biểu thức luôn bằng -76

=> đpcm

b)c) tương tự

2 tháng 9 2018

cái này khá dài nên mik ns lun nha 

: bạn nhân đa thức vs đa thức làm bình thường vậy thôi . kết quả là 1 số tự nhiên thì nó kg phụ thuộc vào biến nha 

   chuk hok tốt 

18 tháng 7 2021

\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)

\(=\dfrac{29x^2+29}{x^2+1}=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\)

Vậy.....

Ta có: \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)

\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)

\(=\dfrac{29x^2+29}{x^2+1}=29\)