K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

B= 2(x2+x+1/2)

  = 2(x2+2x1/2+(1/2)2-(1/2)2+1/2)

  = 2[(x+1/2)2+1/4) lớn hơn hoặc bằng 1/2 với mọi x

do đó B lớn hơn 0 với mọi x

11 tháng 8 2017

\(B=2x^2+2x+1\)

\(B=2\left(x^2+x+\frac{1}{2}\right)\)(Đặt nhân tử chung)

\(B=2\left[x^2+2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{1}{2}-\left(\frac{1}{2}\right)^2\right]\)(Thêm bớt hạng tử)

\(B=2\left\{\left[x^2+2.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\left(\frac{1}{2}-\frac{1}{4}\right)\right\}\)(Nhóm hạng tử)

\(B=2\left[\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\right]\)(Dùng hằng đẳng thức)

\(B=2\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\)(Phá ngoặc)

Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\)với mọi \(x\)

\(\Leftrightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)

\(\Leftrightarrow2\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\)với mọi \(x\)

\(\Leftrightarrow B>0\)

Vậy biểu thức \(B\) luôn dương với mọi \(x\)

NV
30 tháng 7 2021

a. Đề sai, với \(x=0\Rightarrow A=4>0\)

b. Đề sai, với \(x=0\Rightarrow B=12>0\)

Đề sai rồi bạn

12 tháng 4 2022

a, Với x khác 1 

\(A=\dfrac{x^2+x+1-3x^2+2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1-x}{\left(x-1\right)\left(x^2+x+1\right)}=-\dfrac{1}{x^2+x+1}\)

b, Ta có \(x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\Rightarrow\dfrac{-1}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}< 0\)

Vậy với x khác 1 thì bth A luôn nhận gtri âm 

28 tháng 7 2016

Hỏi đáp Toán

2 tháng 1 2018

Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)

               \(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)

=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)

^_^

\(Q=x^2+6y^2-2xy-12x+2y+2017\)

\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)

\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)

\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)

Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)

\(\Rightarrow Q>0\)

5 tháng 1 2022

BẠN CÓ THỂ GIẢI THÍCH KHÔNG

29 tháng 7 2016

-(x2-8x+16)-(y2-4y+4)= -(x-4)2-(y-2)2

Ta có : -(x-4)2<= 0

suy ra: -(x-4)2-(y-2)2<=0 (dpcm)

banh

6 tháng 4 2018

xet hiệu 2a4+1-2a3-a2=a4-2a3+a2+a4-2a2+1=(a2-a)+(a2+1)>=0 

đcpcm 

23 tháng 7 2016

bài 1 : a. x^3 +27 -54-x^3 =-27

b. 8x^3 +y^3 -8x^3 +y^3 =2y^3

c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3

d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3

23 tháng 7 2016

 a. (x-1)^2 =5^2

x-1=5

x=6

 

12 tháng 9 2021

a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)

c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)

\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)

d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)

\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)

e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)

\(minE=-20\Leftrightarrow x=-3\)

f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)

12 tháng 9 2021

\(A=x^2+3x+4=\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{7}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\)

Do \(\left(x+\dfrac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x+\dfrac{3}{2}=0\Leftrightarrow x=-\dfrac{3}{2}\)

Mấy câu còn lại làm tương tự nhé em^^