K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2017

\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)

\(=\dfrac{3}{1.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{4033}{2016^2.2017^2}\)

\(=\dfrac{1}{1}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\)

\(=1-\dfrac{1}{2017^2}< 1\)

\(\Rightarrow A< 1\left(đpcm\right)\)

Vậy...

2 tháng 5 2019

P=3 /1.2+1/22.32+...+4033/20162.20172

P=1/1 -1/22 +1/22 -1/52 +...+1/2016- 1/20172

P=1-1/20172 <1

vậy p<1

16 tháng 5 2018

Ta có nhận xét sau 

Với n là số nguyên dương

\(\frac{2n+1}{n^2.\left(n+1\right)^2}=\frac{n^2+2n+1-n^2}{n^2\left(n+1\right)^2}=\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}-\frac{n^2}{n^2\left(n+1\right)^2}=\frac{1}{n^2}-\frac{1}{\left(n+1\right)^2}\)

Áp dụng nhận xét trên ,ta có 

\(P=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{2016^2}-\frac{1}{2017^2}=1-\frac{1}{2017^2}>1\)

7 tháng 5 2017

\(P=\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+.....+\frac{4033}{\left(2016.2017\right)^2}\)

\(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+.....+\frac{2017^2-2016^2}{2016^2.2017^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+....+\frac{1}{2016^2}-\frac{1}{2017^2}\)

\(=1-\frac{1}{2017^2}< 11\) (đpcm)

7 tháng 5 2017

Bài này trong đề thi học kì 2 môn Toán lớp 6 trường Amsterdam năm 2016-2017 này. Mình 10 luôn hehe

27 tháng 3 2018

\(A=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right):2\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right):2\)

\(=\left(1-\frac{1}{2017}\right):2\)\(< \)\(\frac{1}{2}\)   (Do 1 - 1/2017 < 1)

11 tháng 8 2016

ai giúp mình với

11.2+12.3+13.4+14.5+...+12015.2016+12016.2017

=112+1213+1314+1415+...+1201512016+1201612017

=112017=20162017

6 tháng 3 2019

A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

A = \(1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-...-\left(\frac{1}{2016}-\frac{1}{2016}\right)-\frac{1}{2017}\)

A = \(1-0-0-0...-0-\frac{1}{2017}\)

A = \(1-\frac{1}{2017}< 1\)

6 tháng 3 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(A=1-\frac{1}{2017}=\frac{2016}{2017}< \frac{2017}{2017}=1\)

=> A<1(đpcm)

12 tháng 6 2016

Mi hả Đức ta Gia Huy nè !

15 tháng 9 2016

A=1.2+2.3+3.4+4.5+5.6+...+2016.2017 

=> 3A = 1.2.3+2.3.3+3.4.3+4.5.3+5.6.3+.......+2016.2017.3

=> 3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + 4.5.(6-3) + .......+ 2016.2017.(2018-2015)

=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +..........+ 2016.2017.2018 - 2015.2016.2017

=> 3A = 2016.2017.2018

=> A = 2016.2017.2018 : 3 

15 tháng 9 2016

Mày.ngu qua