Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/2 + 1/3 + 1/6 = 1 (1)
1/8 x 4 < 1/4 + 1/5 + 1/7 + 1/8 < 1/4 x 4
hay 1/2 < 1/4 + 1/5 + 1/7 + 1/8 < 1 (2)
1/18 x 9 < 1/9 + 1/10 + 1/11+....+1/17 < 1/9 x 9
hay 1/2 < 1/9 + 1/10 + 1/11+....+ 1/17 < 1 (3)
Từ ( 1), (2) và (3), ta có:
1 + 1/2 + 1/2 < A < 1+ 1+ 1
hay 2 < A < 3
vậy A ko phải số tự nhiên.
Ta có: 1/2 + 1/3 + 1/6 = 1 (1) 1/8 x 4 < 1/4 + 1/5 + 1/7 + 1/8 < 1/4 x 4 hay 1/2 < 1/4 + 1/5 + 1/7 + 1/8 < 1 (2) 1/18 x 9 < 1/9 + 1/10 + 1/11+....+1/17 < 1/9 x 9 hay 1/2 < 1/9 + 1/10 + 1/11+....+ 1/17 < 1 (3) Từ ( 1), (2) và (3), ta có: 1 + 1/2 + 1/2 < A < 1+ 1+ 1 hay 2 < A < 3 vậy A ko phải số tự nhiên.
Ta có:
A = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) +
(1/12 + 1/13 + 1/14) + (1/15 + 1/16 + 1/17) <
(1/2 + 1/3 + 1/4 + 1/5) + 3(1/6) + 3(1/9) + 3(1/12) + 3(1/15) =
2(1/2 + 1/3 + 1/4 + 1/5) < 2(1/2 + 1/2 + 1/4 + 1/4) = 3
Mặt khác
A = (1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) +
(1/13 + 1/14 + 1/15 + 1/16) + 1/17 >
(1/2 + 1/3 + 1/4) + 4(1/8) + 4(1/12) + 4(1/16) =
2(1/2 + 1/3 + 1/4) > 2(1/2 + 1/4 + 1/4) = 2 => 2 < A < 3
Vậy A không là số tự nhiên
\(A=1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+n}\)
\(=1+\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{\dfrac{n\left(n+1\right)}{2}}\)
\(=1+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{n\left(n+1\right)}\)
\(=1+2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)
\(=2-\dfrac{2}{n+1}\) ko là số tự nhiên
1 và 2 đều dùng chung một cách giải .
Tổng của các phân số có tử số là một luôn là một phân số bé hơn một .
Vậy chúng đều không phải số tự nhiên .
Nguyễn Ngọc Đạt F12 ns vậy cũng nói, tổng các số bé hơn 1 là bé hơn 1 ak ??? 0.5<1 ; 0.75 , 1 mà 0.5 + 0.75 >1 đó
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16
= (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.