Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n^3-n=n(n-1)(n+1) là tích 3 số nguyên liên tiếp
=>tồn tại 1 bội của 3 =>n(n-1)(n+1) chia hết cho 3
=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2
mà (2;3)=1=>n(n-1)(n+1)chia hết cho 6
hay n^3-n chia hết cho 6
n^5-n=n(n-1)(n+1)(n^2+1)
=n(n-1)(n+1)(n^2-4+5)
=n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)
n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp
=>tồn tại 1 bội của 5 =>n(n-1)(n+1) chia hết cho 5
=>tồn tại ít nhất2 bội của 2 =>n(n-1)(n+1) chia hết cho 2
mà (2;5)=1=>n(n-1)(n+1)(n-2)(n+2) chia hết cho 10
n(n-1)(n+1) là tích 3 số nguyên liên tiếp
=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2
=>5n(n-1)(n+1) chia hết cho 10
=>n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)chia hết cho 10
hay n^5-n chia hết cho 10
A= n5 -n = n(n2+1)(n+1)(n-1)
+Nếu n =5k => A chia hết cho 5
+ n =5k+1 => n-1 = 5k+1 -1 =5k chia hết cho 5 =>A chia heét cho 5
+ n= 5k+2 => n2+1 =(5k+2)2+1 = 25k2 +20k +4+1 =5(5k2+4k+1) chia hết cho 5 => A chia hết cho 5
+ n= 5k+3 => n2 +1 = tương tự chia hết cho 5 => A chia hết cho 5
+ n =5k+4 => n+1 = 5k+4+1 =5(k+1) chia hết cho 5 => A chia hêts cho 5
Vậy A= n5 -n chia hết cho 5 với mọi n thuộc N
A= n5 -n = n(n2+1)(n+1)(n-1)
+Nếu n =5k => A chia hết cho 5
+ n =5k+1 => n-1 = 5k+1 -1 =5k chia hết cho 5 =>A chia heét cho 5
+ n= 5k+2 => n2+1 =(5k+2)2+1 = 25k2 +20k +4+1 =5(5k2+4k+1) chia hết cho 5 => A chia hết cho 5
+ n= 5k+3 => n2 +1 = tương tự chia hết cho 5 => A chia hết cho 5
+ n =5k+4 => n+1 = 5k+4+1 =5(k+1) chia hết cho 5 => A chia hêts cho 5
Vậy A= n5 -n chia hết cho 5 với mọi n thuộc N
\(5^{n+3}-5^{n+2}=5^{n+2}\left(5-1\right)=5^{n+2}.4=5^2.5^n.4=25.5^n.4=100.5^n\) chia hết cho 100 (đpcm)
\(5^{n+3}-5^{n+2}=5^{n+2}\left(5-1\right)=5^{n+2}.4=5^n.25.4=5^n.100\)
Ta thấy :\(5^n.100⋮100\)
\(\RightarrowĐPCM\)