Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
`5S=5(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`
`5S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)`
`=>5S-S=1/5+2/(5^2)+3/(5^3)+...+99/(5^100)-(1/(5^2)+2/(5^3)+3/(5^4)+...+99/(5^100))`
`4S=1/5+1/(5^2)+1/(5^3)+1/(5^4)+...+1/(5^99) -99/(5^100)`
`20S=5(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`
`20S=1+1/5+1/(5^2)+....+1/(5^98)-99/(5^99)`
`=>20S-4S=(1+1/5+1/(5^2)+...+1/(5^98)-99/(5^99))-(1/5+1/(5^2)+1/(5^3)+...+1/(5^99)-99/(5^100))`
`=>16S=1-99/(5^99)-1/(5^99)-99/(5^100)`
Vì `-99/(5^99)-1/(5^99)-99/(5^100)<0=>1-99/(5^99)-1/(5^99)-99/(5^100)<1`
`=>S<1/16`
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
Cậu bùi danh nghệ gì đó ơi đây là toán nâng cao chứ ko phải toán lớp 7,8 như cậu nói đâu
2.
Ta có : \(A=\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)
để A là số nguyên thì \(\frac{3}{n+2}\)là số nguyên
\(\Rightarrow3⋮n+2\)
\(\Rightarrow\)n + 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
Lập bảng ta có :
n+2 | 1 | -1 | 3 | -3 |
n | -1 | -3 | 1 | -5 |
Vậy n \(\in\){ -1 ; -3 ; 1 ; -5 }
3.
\(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}\)
\(=\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{9}\right)+\left(1+\frac{1}{27}\right)+...+\left(1+\frac{1}{3^{98}}\right)\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^{98}}\right)\)
\(=97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)
gọi \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)( 1 )
\(3B=1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)( 2 )
Lấy ( 2 ) trừ ( 1 ) ta được :
\(2B=1-\frac{1}{3^{98}}< 1\)
\(\Rightarrow B=\frac{1-\frac{1}{3^{98}}}{2}< \frac{1}{2}< 1\)
\(\Rightarrow97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)< 100\)
4.
đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)
\(5A=1-\frac{1}{31}< 1\)
\(\Rightarrow A=\frac{1-\frac{1}{31}}{5}< \frac{1}{5}< 1\)
Ta có : \(2A=2.\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)
\(A=2+2^3+2^4+2^5+...+2^{2016}+2^{2017}-1-2-2^2-2^3-...-2^{2015}-2^{2016}\)
\(A=2^{2017}-1\)